183
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Study on reduction of thermal conductivity of composite phase change material using Cu nanoparticles

, , , , , & show all

References

  • Bönnemann, H., S. S. Botha, B. Bladergroen, and V. M. Linkov. 2005. Monodisperse copper- and silver-nanocolloids suitable for heat-conductive fluids. Applied Organometallic Chemistry 19 (6):768–73. doi:10.1002/(ISSN)1099-0739.
  • Garg, J. 2008. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. Journal Applications Physical 103 (7):074301. doi:10.1063/1.2902483.
  • Ge, Z. B., Y. J. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill. 2005. Thermal transport in Au-core polymer-shell nanoparticles. Nano Letters 5 (3):531–35. doi:10.1021/nl047944x.
  • Hong, K. S., T. K. Hong, and H. S. Yang. 2006. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Applied Physics Letters 88 (3):031901–3. doi:10.1063/1.2166199.
  • Kim, W. L., J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar. 2006. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Physical Review Letters 96 (4):045901. doi:10.1103/PhysRevLett.96.045901.
  • Li, Y., K. S. Moon, and C. Wong. 2005. Monolayer-protected silver nano-particle-based anisotropic conductive adhesives: Enhancement of electrical and thermal properties. Journal of Electronic Materials 34 (12):1573–78. doi:10.1007/s11664-005-0167-5.
  • Mohamed, M. B., T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed. 2001. Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. Chemical Physics Letters 343 (1–2):55–63. doi:10.1016/S0009-2614(01)00653-4.
  • Prasher, R. 2006. Thermal interface materials: Historical perspective, status, and future directions. Proceedings of the IEEE 94 (8):1571–86. doi:10.1109/JPROC.2006.879796.
  • Putnam, S. A., D. G. Cahill, B. J. Ash, and L. S. Schadler. 2003. High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces. Journal of Applied Physics 94 (10):6785–88. doi:10.1063/1.1619202.
  • Rao, Z. H., and G. Q. Zhang. 2011. Thermal properties of paraffin wax-based composites containing graphite. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33 (7):587–93. doi:10.1080/15567030903117679.
  • Salaün, F., E. Devaux, S. Bourbigot, P. Rumeau, P.-O. Chapuis, S. K. Saha, and S. Volz. 2008. Polymer nanoparticles to decrease thermal conductivity of phase change materials. Thermochimica Acta 477 (1–2):25–31. doi:10.1016/j.tca.2008.07.006.
  • Sari, A., A. Karaıpeklı, and K. Kaygusuz. 2008. Fatty acid/expanded graphite composites as phase change material for latent heat thermal energy storage. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 30 (5):464–74. doi:10.1080/15567030601003700.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.