188
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Segregation of coal particles in air classifier: Effect of particle size and density

, , , , &

References

  • Altun, O., and H. Benzer. 2014. Selection and mathematical modelling of high efficiency air classifiers. Powder Technology 264:1–8. doi:10.1016/j.powtec.2014.05.013.
  • Altun, O., A. Toprak, H. Benzer, and O. Darilmaz. 2016. Multi component modeling of an air classifier. Minerals Engineering 93:50–56. doi:10.1016/j.mineng.2016.04.014.
  • Ataş, S., U. Tekir, M. A. Paksoy, A. Çelik, M. Çam, and T. Sevgel. 2014. Numerical and experimental analysis of pulverized coal mill classifier performance in the Soma B Power Plant. Fuel Processing Technology 126:441–52. doi:10.1016/j.fuproc.2014.05.016.
  • Bhasker, C. 2002. Numerical simulation of turbulent flow in complex geometries used in power plants. Advances in Engineering Software 33:71–83. doi:10.1016/S0965-9978(01)00053-9.
  • Eswaraiah, C., S. S. Narayanan, and S. Jayanti. 2008. A reduced efficiency approach-based process model for a circulating air classifier. Chemical Engineering and Processing: Process Intensification 47:1887–900. doi:10.1016/j.cep.2007.10.016.
  • Feng, Y. G., J. X. Liu, and S. Z. Liu. 2008. Effects of operating parameters on flow field in a turbo air classifier. Minerals Engineering 21:598–604. doi:10.1016/j.mineng.2007.11.008.
  • Kis, P. B., C. Mihálykó, and B. G. Lakatos. 2005. Optimising design of continuous grinding mill-classifier systems. Chemical Engineering and Processing 44:273–77. doi:10.1016/j.cep.2004.04.009.
  • Kis, P. B., C. Mihálykó, and B. G. Lakatos. 2006. Discrete model for analysis and design of grinding mill-classifier systems. Chemical Engineering and Processing: Process Intensification 45:340–49. doi:10.1016/j.cep.2005.09.006.
  • Kojovic, T., F. N. Shi, and M. Brennan. 2015. Modelling of vertical spindle mills. Part 2: Integrated models for E-mill, MPS and CKP mills. Fuel 143:602–11. doi:10.1016/j.fuel.2014.11.015.
  • Li, H., Y. Q. He, F. N. Shi, W. R. Zuo, N. X. Zhou, H. Wei, S. Wang, and W. N. Xie. 2016. Performance of the static air classifier in a vertical spindle mill. Fuel 177:8–14. doi:10.1016/j.fuel.2016.02.090.
  • Özer, C. E. (2011) A new multi-component model for the vertical spindle mill. PhD Thesis. University of Queensland (JKMRC): Australia.
  • Özer, C. E., W. J. Whiten, F. Shi, and T. Dixon. 2010. Investigation of the classification operation in a coal pulverising vertical spindle pulveriser, 1065–76. Brisbane: XXV International Mineral Processing Congress.
  • Parham, J. J., and W. J. Easson. 2003. Flow visualisation and velocity measurements in a vertical spindle coal mill static classifier. Fuel 82:2115–23. doi:10.1016/S0016-2361(03)00185-6.
  • Rao, B. V. 2005. Analytical expressions for classifier product size distributions. Minerals Engineering 18:557–60. doi:10.1016/j.mineng.2004.08.014.
  • Sato, K., N. Meguri, K. Shoji, H. Kanemoto, T. Hasegawa, and T. Maruyama. 1996. Breakage of coals in ring-roller mills Part I. The breakage properties of various coals and simulation model to predict steady-state mill performance. Powder Technology 86:275–83. doi:10.1016/0032-5910(95)03061-1.
  • Shah, K. V., R. Vuthaluru, and H. B. Vuthaluru. 2009. CFD based investigations into optimization of coal pulveriser performance: Effect of classifier vane settings. Fuel Processing Technology 90 (9):1135–41. doi:10.1016/j.fuproc.2009.05.009.
  • Shi, F. N., and Y. Q. He. 2011. Efficiency improvements in coal fired utilities. Asia-Pacific Partnership on Clean Development and Climate (April) 56–57.
  • Shi, F. N., T. Kojovic, and M. Brennan. 2015. Modelling of vertical spindle mills. Part 1: Sub-models for comminution and classification. Fuel 143:595–601. doi:10.1016/j.fuel.2014.10.085.
  • Vesilind, P. A., J. J. Peirce, and M. Mcnabb. 1982. Predicting particle behavior in air classifiers. Conservation & Recycling 5 (4):209–13. doi:10.1016/0361-3658(82)90049-2.
  • Vuthaluru, H. B., V. K. Pareek, and R. Vuthaluru. 2005. Multiphase flow simulation of a simplified coal pulveriser. Fuel Processing Technology 86 (11):1195–205. doi:10.1016/j.fuproc.2004.12.003.
  • Wang, S. (2013) Particle separation behavior of recirculating load of power station pulverizer in the dilute phase vibrated gas-solid fluidized bed. PhD Thesis. Xuzhou: China University of Mining and Technology.
  • Wei, H., Y. Q. He, F. N. Shi, N. X. Zhou, S. Wang, and L. H. Ge. 2014. Breakage and separation mechanism of ZGM coal mill based on parameters optimization model. International Journal of Mining Science and Technology 24 (2):285–89. doi:10.1016/j.ijmst.2014.01.023.
  • Xia, W. C., C. K. Niu, and C. C. Ren. 2017. Enhancement in floatability of sub-bituminous coal by low-temperature pyrolysis and its potential application in coal cleaning. Journal of Cleaner Production 168:1032–38. doi:10.1016/j.jclepro.2017.09.119.
  • Xia, W. C., C. L. Zhou, and Y. L. Peng. 2017. Enhancing flotation cleaning of intruded coal dry-ground with heavy oil. Journal of Cleaner Production 161:591–97. doi:10.1016/j.jclepro.2017.05.193.
  • Xie, W. N. (2016) Fundamental research on grinding kinetics of vertical spindle pulverizer in coal power plants based on energy characterized parameters. PhD Thesis. Xuzhou: China University of Mining and Technology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.