506
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

An experimental study on the bubble humidification method of polymer electrolyte membrane fuel cells

, & ORCID Icon

References

  • Afshari, E., and N. Baharlou Houreh. 2014. Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system. Energy Conversion and Management 88:612–21. doi:10.1016/j.enconman.2014.08.067.
  • Afshari, E., and S. A. Jazayeri. 2009. Analyses of heat and water transport interactions in a proton exchange membrane fuel cell. Journal of Power Sources 194:423–32. doi:10.1016/j.jpowsour.2009.04.057.
  • Ahluwalia, R. K., X. Wang, W. B. Johnson, F. Berg, D. KadylakChen, and H. Peng. 2015. Performance of a cross-flow humidifier with a high flux water vapor transport membrane. Journal of Power Sources 291:225–38. doi:10.1016/j.jpowsour.2015.05.013.
  • Baharlou Houreh, N., and E. Afshari. 2014a. An analytic model of membrane humidifier for proton exchange membrane fuel cell. Energy Equipment and System 2:83–94.
  • Baharlou Houreh, N., and E. Afshari. 2014b. Three-dimensional CFD modeling of a planar membrane humidifier for PEM fuel cell systems. International Journal of Hydrogen Energy 39:14969–79. doi:10.1016/j.ijhydene.2014.07.037.
  • Bhatia, D., M. Sabharwal, and C. Duelk. 2013. Analytical model of a membrane humidifier for polymer electrolyte membrane fuel cell systems. International Journal of Heat Mass Transfer 58:702–17. doi:10.1016/j.ijheatmasstransfer.2012.11.033.
  • Casalegno, A., S. D. Antonellis, L. Colombo, and F. Rinaldi. 2011. Design of an innovative enthalpy wheel based humidification system for polymer electrolyte fuel cell. International Journal of Hydrogen Energy 36:5000–09. doi:10.1016/j.ijhydene.2011.01.012.
  • Cave, P., and W. Merida. 2008. Water flux in membrane fuel cell humidifiers, flow rate and channel location, effects. Journal of Power Sources 175:408–18. doi:10.1016/j.jpowsour.2007.08.103.
  • Chang, H., Z. Wan, Y. Zheng, X. Chen, S. Shu, Z. Tu, and S. H. Chan. 2017a. Energy analysis of a hybrid PEMFC–Solar energy residential micro-CCHP system combined with an organic Rankine cycle and vapor compression cycle. Energy Conversion and Management 142:374–84. doi:10.1016/j.enconman.2017.03.057.
  • Chang, H., Z. Wan, Y. Zheng, X. Chen, S. Shu, Z. Tu, S. H. Chan, R. Chen, and X. Wang. 2017b. Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system. Applied Energy 204:446–58. doi:10.1016/j.apenergy.2017.07.031.
  • Chen, B., Y. Cai, J. Shen, Z. Tu, and S. Hwa Chan. 2017. Performance degradation of a proton exchange membrane fuel cell with dead-ended cathode and anode. Applied Thermal Engineering. doi:10.1016/j.applthermaleng.2017.12.078.
  • Chen, B., Z. Tu, and S. Hwa Chan. 2017. Performance degradation and recovery characteristics during gas purging in a proton exchange membrane fuel cell with a dead-ended anode. Applied Thermal Engineering. doi:10.1016/j.applthermaleng.2017.10.10.
  • Chen, B., J. Wang, T. Yang, Y. Cai, M. Pan, Z. Tu, C. Zhang, S. H. Chan, and Y. Yu. 2016a. Mitigation studies of carbon corrosion by optimizing the opening size of the cathode outlet in a proton exchange membrane fuel cell with dead-ended anode. Energy Conversion and Management 119:60–66. doi:10.1016/j.enconman.2016.04.043.
  • Chen, B., J. Wang, T. Yang, Y. Cai, C. Zhang, S. H. Chan, Y. Yu, and Z. Tu. 2016b. Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode. Energy 106:54–62. doi:10.1016/j.energy.2016.03.045.
  • Chen, B., M. Wang, Z. Tu, X. Gong, H. Zhang, M. Pan, Y. Cai, and Z. Wan. 2015. Moisture dehumidification and its application to a 3kW proton exchange membrane fuel cell stack. International Journal of Hydrogen Energy 40:1137–44. doi:10.1016/j.ijhydene.2014.11.076.
  • Chen, D., and H. Peng. 2005. A thermodynamic model of membrane humidifiers for PEM fuel cell humidification control. Journal of Dynamic System, Measurement, and Control 127:424–32. doi:10.1115/1.1978910.
  • Guo, X., Y. Zeng, Z. Wang, Z. Shao, and B. Yi. 2016. Investigation of porous water transport plates used for the humidification of a membrane electrode assembly. Journal of Power Sources 302:84–91. doi:10.1016/j.jpowsour.2015.10.005.
  • Huizing, R., M. Fowler, W. Merida, and J. Dean. 2008. Design methodology for membrane-based plate-and-frame fuel cell humidifiers. Journal of Power Sources 180:265–75. doi:10.1016/j.jpowsour.2008.01.046.
  • Hussainia, I. S., and C. Y. Wang. 2009. Visualization and quantification of cathode channel flooding in PEM fuel cells. Journal of Power Sources 187:444–51. doi:10.1016/j.jpowsour.2008.11.030.
  • Hwang, J. J., W. R. Chang, J. K. Kao, and W. Wu. 2012. Experimental study on performance of a planar membrane humidifier for a proton exchange membrane fuel cell stack. Journal of Power Sources 215:69–75. doi:10.1016/j.jpowsour.2012.04.051.
  • Iyukea, S. E., A. B. Mohamad, and W. R. W. Daud. 2001. Estimation of humidification load from humidifier column by convective heat transfer in water–Air–Vapor system. Chemical Engineering Science 56:4949–56. doi:10.1016/S0009-2509(01)00137-3.
  • Kadylak, D., and W. Merida. 2010. Experimental verification of a membrane humidifier model based on the effectiveness method. Journal of Power Sources 195:3166–75. doi:10.1016/j.jpowsour.2009.12.005.
  • Pasaogullari, U., P. P. Mukherjee, C. Y. Wang, and K. S. Chen. 2007. Anisotropic heat and water transport in a PEFC cathode gas diffusion layer. Journal of Electrochem Science 154:823–34. doi:10.1149/1.2745714.
  • Ramya, K., J. Sreenivas, and K. S. Dhathathreyan. 2011. Study of a porous membrane humidification method in polymer electrolyte fuel cells. International Journal of Hydrogen Energy 36:14866–72. doi:10.1016/j.ijhydene.2010.12.088.
  • Sabharwal, M., C. Duelk, and D. Bhatia. 2012. Two-dimensional modeling of a cross-flow plate and frame membrane humidifier for fuel cell applications. Journal of Membrane Science 409:285–301. doi:10.1016/j.memsci.2012.03.066.
  • Tu, Z., H. Zhang, Z. Luo, J. Liu, Z. Wan, and M. Pan. 2013. Evaluation of 5 kW proton exchange membrane fuel cell stack operated at 95°C under ambient pressure. Journal of Power Sources 222:277–81. doi:10.1016/j.jpowsour.2012.08.081.
  • Verta, A., E. Schena, and S. Silvestri. 2010. Mathematical model and minimal measurement system for optimal control of heated humidifiers in neonatal ventilation. Medical Engineering & Physics 32:475–81. doi:10.1016/j.medengphy.2010.03.002.
  • Wan, Z., J. Liu, Z. Luo, Z. Tu, Z. Liu, and W. Liu. 2013. Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell. Applied Energy 104:751–57. doi:10.1016/j.apenergy.2012.12.008.
  • Wan, Z. M., J. H. Wan, J. Liu, Z. K. Tu, M. Pan, Z. C. Liu, and W. Liu. 2012. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack. Applied Thermal Engineering 42:173–78. doi:10.1016/j.applthermaleng.2012.02.045.
  • Zhang, L. Z., and S. M. Huang. 2011. Coupled heat and mass transfer in a counter-flow hollow fiber membrane module for air humidification. International Journal of Heat Mass Transfer 54:1055–63. doi:10.1016/j.ijheatmasstransfer.2010.11.025.
  • Zhang, L. Z., and Z. X. Li. 2013. Convective mass transfer and pressure drop correlations for cross-flow structured hollow fiber membrane bundles under low Reynolds numbers but with turbulent flow behavior. Journal of Membrane Science 434:65–73. doi:10.1016/j.memsci.2013.01.058.
  • Zhang, L. Z., Z. X. Li, T. S. Zhong, and L. X. Pei. 2013. Flow maldistribution and performance deteriorations in a cross flow hollow fiber membrane module for air humidification. Journal of Membrane Science 427:1–9. doi:10.1016/j.memsci.2012.09.030.
  • Zhang, S., B. Chen, P. Shu, M. Luo, C. Xie, S. Quan, Z. Tu, and Y. Yu. 2017. Evaluation of performance enhancement by condensing the anode moisture in a proton exchange membrane fuel cell stack. Applied Thermal Engineering 120:115–20. doi:10.1016/j.applthermaleng.2017.03.128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.