599
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

CFD analysis on flow and performance parameters estimation of solar updraft tower (SUT) plant varying its geometrical configurations

& ORCID Icon

References

  • Ahmed, M. R., and S. K. Patel. 2017. Computational and experimental studies on solar chimney power plants for power generation in Pacific Island countries. Energy Convers and Managed 149:61–78. doi:10.1016/j.enconman.2017.07.009.
  • Ayadi, A., Z. Driss, A. Bouabidi, and M. S. Abid. 2017. Experimental and Numerical study of the impact of the collector roof inclination on the performance of a solar chimney power plant. Energy Buildings 139:263–76. doi:10.1016/j.enbuild.2017.01.047.
  • ANSYS Inc.. 2016. ANSYS Fluent 16 Theory Guide. Canonsburg, Pennsylvania: Academic Research Mechanical.
  • Bernardes, M. A. 2011. Convective heat transfer coefficients for solar chimney power plant collectors. Heat Transf – Mathematical Model Numerical Methods Information Technological InTech 607–20.
  • Bernardes, M. A. 2017a. Correlations for the symmetric converging flow and heat transfer between two nearly parallel stationary disks similar to a solar updraft power plant collector. Soarl Energy 146:309–18. doi:10.1016/j.solener.2017.01.067.
  • Bernardes, M. A. 2017b. Preliminary stability analysis of the convective symmetric converging flow between two nearly parallel stationary disks similar to a Solar Updraft Power Plant Collector. Soarl Energy 141:297–302. doi:10.1016/j.solener.2016.11.042.
  • Bernardes M. A., R. M. Valle, and M. F. B. Cortez. 1999. Numerical analysis of natural laminar convection in a radial solar heater. International Journal Therm Sciences 38 (1):42–50. doi:10.1016/S0035-3159(99)80015-4.
  • Bernardes, M. A., T. W. Von Backstrm, and D. G. Krger. 2008. Critical evaluation of heat transfer coefficients applicable to solar chimney power plant collectors. Proceedings of ISES World Congress 2007 I–V: Springer; 1706–13.
  • Bernardes, M. A., T. W. Von Backstrm, and D. G. Krger. 2009. Analysis of some available heat transfer coefficients applicable to solar chimney power plant collectors. Soarl Energy 83 (2):264–75. doi:10.1016/j.solener.2008.07.019.
  • Demirbas, M. F. 2007. Electricity Production Using Solar Energy. Energy Sources, Part A, Recovery, Utilization, and Environmental Effects 29:563–69. doi:10.1080/009083190957685.
  • Fasel, H. F., F. Meng, E. Shams, and A. Gross. 2013. CFD analysis for solar chimney power plants. Soarl Energy 98(A):12–22. doi:10.1016/j.solener.2013.08.029.
  • Ghalamchi, M., A. Kasaeian, M. Ghalamchi, and A. H. Mirzahosseini. 2016. An experimental study on the thermal performance of a solar chimney with different di-mensional parameters. Renew Energy 91:477–83. doi:10.1016/j.renene.2016.01.091.
  • Gholamalizadeh, E., and J. D. Chung. 2017. Analysis of fluid flow and heat transfer on a solar updraft tower power plant coupled with a wind turbine using computational fluid dynamics. Applications Therm Engineering 126:548–58. doi:10.1016/j.applthermaleng.2017.07.192.
  • Gholamlizadeh, E., and H. Kim. 2016. CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof. Energy 107:661–67. doi:10.1016/j.energy.2016.04.077.
  • Haaf, W., K. Friedrich, G. Mayr, and J. Schlaich. 1983. Solar chimneys, part I: Principle and construction of the pilot plant in Manzanares. International Journal Solar Energy 2:3–20. doi:10.1080/01425918308909911.
  • Hassan, A., and M. Ali. 2018. Waqas A. Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle. Energy 142:411–25. doi:10.1016/j.energy.2017.10.047.
  • Hu, S., D. Y. C. Leung, and J. C. Y. Chan. 2017. Impact of geometry of divergent chimneys on the power output of a solar chimney power plant. Energy 120:1–11. doi:10.1016/j.energy.2016.12.098.
  • Li, J.-Y., P. H. Guo, and Y. Wang. 2012. Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines. Renew Energy 47:21–28. doi:10.1016/j.renene.2012.03.018.
  • Lokeswaran, S., and M. Eswaramoorthy. 2013. An experimental analysis of a solar greenhouse drier: computational fluid dynamics (CFD) validation. Energy Sources, Particle A: Recovery, Utilization, and Environmental Effects 35 (21):2062–71. doi:10.1080/15567036.2010.532195.
  • Maia, C. B., A. G. Ferreira, R. M. Valle, and M. F. B. Cortez. 2009. Theoretical evaluation of the influence of geometric parameters and materials on the behaviour of the airflow in a solar chimney. Computers & Fluids 38:625–36. doi:10.1016/j.compfluid.2008.06.005.
  • Ming, T. Z., W. Liu, Y. Pan, and G. L. Xu. 2008. Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer. Energy Conversion and Management 49:2872–79. doi:10.1016/j.enconman.2008.03.004.
  • Pastohr, H., O. Kornadt, and K. Gürlebeck. 2004. Numerical and analytical calculations of the temperature and flow field in the upwind power plant. International Journal of Energy Researcher 28 (6):495–510. doi:10.1002/er.978.
  • Rabehi, R., A. Chaker, Z. Aouachria, and M. Tingzhen. 2017. CFD analysis on the performance of a solar chimney power plant system: case study in Algeria. International Journal Green Energy 14 (12):971–82. doi:10.1080/15435075.2017.1339043.
  • Ramakrishna, B., V. P. Chandramohan, and K. Kirankumar. 2017. Performance parameter evaluation, materials selection, solar radiation with energy losses, energy storage and turbine design procedure for a pilot scale solar updraft tower. Energy Convers and Managed 150:451–62. doi:10.1016/j.enconman.2017.08.043.
  • Sakonidou, E. P., T. D. Karapantsios, A. I. Balouktsis, and D. Chassapis. 2008. Modeling of the optimum tilt of a solar chimney for maximum air flow. Soarl Energy 82:80–94. doi:10.1016/j.solener.2007.03.001.
  • Shirvan, K. M., S. Mirzakhanlari, M. Mamourian, and N. A. Hamdeh. 2017. Numerical investigation and sensitivity analysis of effective parameters to obtain potential maximum power output: A case study on Zanjan prototype solar chimney power plant. Energy Convers and Managed 136:350–60. doi:10.1016/j.enconman.2016.12.081.
  • Sorgun, M., I. Aydin, E. Ozbayoglu, and J. J. Schubert. 2012. Mathematical modelling of turbulent flows of Newtonian fluids in a concentric annulus with pipe rotation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 34:540–48. doi:10.1080/15567036.2011.578105.
  • Xu, G., T. Ming, Y. Pan, F. Meng, and C. Zhou. 2011. Numerical analysis on the performance of solar chimney power plant system. Energy Convers and Managed 52:876–83. doi:10.1016/j.enconman.2010.08.014.
  • Zhou, X., and Y. Xu. 2016. A comprehensive review paper: Solar updraft tower power generation. Soarl Energy 128:95–125. doi:10.1016/j.solener.2014.06.029.
  • Zhou, X., and Y. Xu. 2017. Effect of flow area to fluid power and turbine pressure drop factor of solar chimney power plants. ASME Journal Solar Energy Engineering 139:041012–1. doi:10.1115/1.4036774.
  • Zhou, X., and S. Yuan. 2017. Wind effects on a solar updraft power plant. Journal Wind Engineering Industrial Aerodyn 170:294–305. doi:10.1016/j.jweia.2017.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.