183
Views
16
CrossRef citations to date
0
Altmetric
Articles

Optimization of diesel engine input parameters running on Polanga biodiesel to improve performance and exhaust emission using MOORA technique with standard deviation

, , &
Pages 2753-2770 | Received 26 Mar 2018, Accepted 20 Jul 2018, Published online: 24 Aug 2018

References

  • Abuhabaya, A., J. Fieldhouse, and D. Brown. 2013. The effects of using biodiesel on CI (compression ignition) engine and optimization of its production by using response surface methodology. Energy 59:56–62. doi:10.1016/j.energy.2013.06.056.
  • Agarwal, A. K., J. Bijwe, and L. M. Das. 2003. Wear assessment in a biodiesel fueled compression ignition engine. Transactions of ASME: Journal of Engineering for Gas Turbines and Power 125 (3):820–26. doi:10.1115/1.1501079.
  • Agarwal, D., L. Kumar, and A. K. Agarwal. 2008. Performance evaluation of a vegetable oil fuelled compression ignition engine. Renewable Energy 33 (6):1147–56. doi:10.1016/j.renene.2007.06.017.
  • Agarwal, D., S. Sinha, and A. K. Agarwal. 2006. Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine. Renewable Energy 31 (14):2356–69. doi:10.1016/j.renene.2005.12.003.
  • Amigun, B., R. Sigamoney, and H. Blottnitz. 2008. Commercialisation of biofuel industry in Africa: A review. Renewable and Sustainable Energy Reviews 12 (3):690–711. doi:10.1016/j.rser.2006.10.019.
  • Bari, S., and I. Saad. 2015. Optimization of vane numbers through simulation and experiment and investigation of the effect on the performance and emissions of a CI (compression ignition) engine run with biodiesel. Energy 79:248–63. doi:10.1016/j.energy.2014.11.011.
  • Bharadwaz, Y. D., B. G. Rao, V. D. Rao, and C. Anusha. 2016. Improvement of biodiesel methanol blends performance in a variable compression ratio engine using response surface methodology. Alexandria Engineering Journal 55:1201–09. doi:10.1016/j.aej.2016.04.006.
  • Bomb, C., K. McCormick, E. Deurwaarder, and T. Kaberger. 2007. Biofuels for transport in Europe: Lessons from Germany and the UK. Energy Policy 35 (4):2256–67. doi:10.1016/j.enpol.2006.07.008.
  • Brauers, W. K. M. 2004. Optimization methods for a stakeholder society: A revolution in economic thinking by multiobjective optimization. Springer Science 73.
  • Brauers, W. K. M., and E. K. Zavadskas. 2009. Robustness of the multiobjective MOORA method with a test for the facilities sector. Technological and Economic Development of Economy 15 (2):352–75. doi:10.3846/1392-8619.2009.15.352-375.
  • Brauers, W. K. M., and E. K. Zavadskas. 2010. Project management by MULTIMOORA as an instrument for transition economies. Technological and Economic Development of Economy 16 (1):5–24. doi:10.3846/tede.2010.01.
  • Brauers, W. K. M., E. K. Zavadskas, F. Peldschus, and Z. Turskis. 2008a. Multiobjective decision-making for road design. Transport 23 (3):183–93. doi:10.3846/1648-4142.2008.23.183-193.
  • Brauers, W. K. M., E. K. Zavadskas, F. Peldschus, and Z. Turskis 2008b. Multi-objective optimization of road design alternatives with an application of the MOORA method. Proceedings of the 25th international symposium on automation and robotics in construction, Lithuania, 541–48.
  • Brauers, W. K. M., E. K. Zavadskas, Z. Turskis, and T. Vilutiene. 2008c. Multi-objective contractor’s ranking by applying the MOORA method. Journal of Business Economics and Management 9 (4):245–55. doi:10.3846/1611-1699.2008.9.245-255.
  • Channapattana, S. V., A. A. Pawar, and P. G. Kamble. 2017. Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model. Applied Energy 187:84–95. doi:10.1016/j.apenergy.2016.11.030.
  • Damanik, N., H. C. Ong, W. T. Chong, and A. S. Silitonga. 2017. Biodiesel production from Calophyllum inophyllum-palm mixed oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (12):1283–89. doi:10.1080/15567036.2017.1324537.
  • Dorado, M. P., F. Cruz, J. M. Palomar, and F. J. Lopez. 2006. An approach to the economics of two vegetable oil-based biofuels in Spai. Renewable Energy 31 (8):1231–1217. doi:10.1016/j.renene.2005.06.010.
  • Forson, F. K., E. K. Oduro, and D. E. Hammond. 2004. Performance of jatropha oil blends in a diesel engine. Renewable Energy 29 (7):1135–45. doi:10.1016/j.renene.2003.11.002.
  • Galbe, M., G. Liden, and G. Zacchi. 2005. Production of ethanol from biomass-research in Sweden. Journal of Scientific and Industrial Research 64:905–19.
  • Ganapathy, T., K. Murugesan, and R. P. Gakkhar. 2009. Performance optimization of Jatropha biodiesel engine model using Taguchi approach. Applied Energy 86:2476–86. doi:10.1016/j.apenergy.2009.02.008.
  • Guru, M., A. Koca, O. Can, C. Cinar, and F. Sahin. 2010. Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine. Renewable Energy 35 (3):637–43. doi:10.1016/j.renene.2009.08.011.
  • Haik, Y., M. Y. E. Selim, and T. Abdulrehman. 2011. Combustion of algae oil methyl ester in an indirect injection diesel engine. Energy 36 (3):1827–35. doi:10.1016/j.energy.2010.11.017.
  • Hoekman, S. K. 2009. Biofuels in the U.S.—Challenges and opportunities. Renewable Energy 34 (1):14–22. doi:10.1016/j.renene.2008.04.030.
  • Kalam, M. A., and H. H. Masjuki. 2004. Emissions and deposit characteristics of a small diesel engine when operated on preheated crude palm oil. Biomass and Bioenergy 27 (3):289–97. doi:10.1016/j.biombioe.2004.01.009.
  • Kalayasiri, P., N. Jeyashoke, and K. Krisangkura. 1996. Survey of seed oils for use as diesel fuels. Journal of the American Oil Chemists Society 73 (4):471–74. doi:10.1007/BF02523921.
  • Kalibatas, D., and Z. Turskis. 2008. Multicriteria evaluation of inner climate by using MOORA method. Information Technology and Control 37 (1):79–83.
  • Kallivroussis, L., A. Natsis, and G. Papadakis. 2002. The energy balance of sunflower production for biodiesel in Greece. Biosystems Engineering 81 (3):347–54. doi:10.1006/bioe.2001.0021.
  • Karabektas, M., G. Ergen, and M. Hosoz. 2008. The effects of preheated cottonseed oil methyl ester on the performance and exhaust emissions of a diesel engine. Applied Thermal Engineering 28 (17):2136–43. doi:10.1016/j.applthermaleng.2007.12.016.
  • Karaosmanoglu, F., G. Kurt, and T. Ozaktas. 2000. Long term CI engine test of sunflower oil. Renewable Energy 19 (1):219–21. doi:10.1016/S0960-1481(99)00034-8.
  • Katinas, V., A. Markevicius, and A. Kavaliauskas. 2007. Current status and prospects of biomass resources for energy production in Lithuania. Renewable Energy 32 (5):884–94. doi:10.1016/j.renene.2006.03.012.
  • Koizumi, T. 2011. The Japanese biofuels program—Developments and perspectives. Journal of Cleaner Production 40:57–61. doi:10.1016/j.jclepro.2011.04.022.
  • Kusumo, F., A. S. Silitonga, H. C. Ong, H. H. Masjuki, and T. M. I. Mahlia. 2017. A comparative study of ultrasound and infrared transesterification of Sterculia foetida oil for biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (13):1339–46. doi:10.1080/15567036.2017.1328003.
  • Labeckas, G., and S. Slavinskas. 2006. Performance of direct-injection off-road diesel engine on rapeseed oil. Renewable Energy 31 (6):849–63. doi:10.1016/j.renene.2005.05.009.
  • Lin, W., and Z. Ma. 2016. Using Taguchi-Fibonacci search method to optimize phase change materials enhanced buildings with integrated solar photovoltaic thermal collectors. Energy 106:23–37. doi:10.1016/j.energy.2016.03.013.
  • Lopez, I., S. Pinzi, D. L. Candila, and M. P. Doraba. 2016. Multiple response optimization to reduce exhaust emissions and fuel consumption of a diesel engine fueled with olive pomace oil methyl ester/diesel fuel blends. Energy 117:398–404. doi:10.1016/j.energy.2016.03.064.
  • Milano, J., H. C. Ong, H. H. Masjuki, A. S. Silitonga, W. H. Chen, F. Kusumo, S. Dharma, and A. H. Sebayang. 2018. Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy Conversion and Management 158:400–15. doi:10.1016/j.enconman.2017.12.027.
  • Ministry of Consumer Affairs, Food & Public Distribution, Government of India. 2017. www.fcamin.nic.in.
  • Mirza, U. K., N. Ahmad, and T. Majeed. 2008. An overview of biomass energy utilization in Pakistan. Renewable and Sustainable Energy Reviews 12 (7):1988–96. doi:10.1016/j.rser.2007.04.001.
  • Mohan, B., W. Yang, V. Raman, V. Sivasankaralingam, and S. K. Chou. 2014. Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing. Applied Energy 130:450–57. doi:10.1016/j.apenergy.2014.02.033.
  • Monteiro, M. R., A. R. P. Ambrozin, L. M. Liao, and A. G. Ferreira. 2008. Critical review on analytical methods for biodiesel characterization. Talanta 77 (2):593–605. doi:10.1016/j.talanta.2008.07.001.
  • Monyem, A., and J. H. V. Gerpen. 2001. The effect of biodiesel oxidation on engine performance and emissions. Biomass and Bioenergy 20 (4):317–25. doi:10.1016/S0961-9534(00)00095-7.
  • Muqeem, M. 2012. Turbocharging with air conditioner assisted intercooler. Journal of Mechanical and Civil Engineering 2 (3):38–44. doi:10.9790/1684-0233844.
  • Muqeem, M., and M. Kumar. 2013a. Design of an intercooler of a turbocharger unit to enhance the volumetric efficiency of diesel engine. International Journal of Mechanical Engineering and Technology 4 (3):1–10.
  • Muqeem, M., and M. Kumar. 2013b. Turbocharging of IC engine: A review. International Journal of Mechanical Engineering and Technology 4 (1):142–49.
  • Muqeem, M., A. F. Sherwani, and M. Ahmad. 2015. Turbocharging of diesel engine for improving performance and exhaust emissions: A review. Journal of Mechanical and Civil Engineering 12 (4):22–29.
  • Muqeem, M., A. F. Sherwani, M. Ahmad, and Z. A. Khan. 2017. Taguchi based combined grey relational and principal component analyses for multi response optimization of diesel engine. Grey Systems: Theory and Application 7 (3):408–25. doi:10.1108/GS-05-2017-0013.
  • Muqeem, M., A. F. Sherwani, M. Ahmad, and Z. A. Khan. 2018. Optimization of diesel engine input parameters for reducing hydrocarbon emission and smoke opacity using Taguchi method and analysis of variance. Energy & Environment 29 (3):410–31. doi:10.1177/0958305X17751393.
  • Nabi, M. N., M. M. Rahman, and M. S. Akhter. 2009. Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Applied Thermal Engineering 29 (11):2265–70. doi:10.1016/j.applthermaleng.2008.11.009.
  • Panoutsou, C., I. Namatov, V. Lychnaras, and A. Nikolaou. 2008. Biodiesel options in Greece. Biomass and Bioenergy 32 (6):473–81. doi:10.1016/j.biombioe.2007.11.011.
  • Pereira, R. G., C. D. Oliveira, J. L. Oliveira, P. C. P. Oliveira, C. E. Fellows, and O. E. Piamba. 2007. Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel. Renewable Energy 32 (14):2453–60. doi:10.1016/j.renene.2006.05.007.
  • Pugazhvadivu, M., and K. Jeyachandran. 2005. Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel. Renewable Energy 30 (14):2189–202. doi:10.1016/j.renene.2005.02.001.
  • Puhan, S., N. Vedraman, B. V. Rambrahaman, and G. Nagranjan. 2005. Mahua (Madhuca indica) seed oil: A source of renewable energy in India. Journal of Scientific and Industrial Research 64:890–96.
  • Raffiq, H. M., and K. M. B. Ahmed. 2005. Emission control for a direct diesel injection CI engine using preheated coconut oil blended diesel. Journal of the Institution of Engineers (India) 86:149–52.
  • Ramadhas, A. S., S. Jayaraj, and C. Muraleedharan. 2005. Characterization and effect of using rubber seed oil as fuel in the compression ignition engines. Renewable Energy 30 (5):795–803. doi:10.1016/j.renene.2004.07.002.
  • Rao, K. P., and B. V. A. Rao. 2017. Parametric optimization for performance and emission of an IDI engine with Mahua Biodiesel. Egyptian Journal of Petroleum 26 (3):733–43. doi:10.1016/j.ejpe.2016.10.003.
  • Reddy, J. N., and A. Ramesh. 2006. Parametric studies for improving the performance of a jatropha oil-fuelled compression ignition engine. Renewable Energy 31 (12):1994–2016. doi:10.1016/j.renene.2005.10.006.
  • Sahoo, P. K., and L. M. Das. 2009a. Combustion analysis of Jatropha, Karanja and Polanga based biodiesel as fuel in a diesel engine. Fuel 88:994–99. doi:10.1016/j.fuel.2008.11.012.
  • Sahoo, P. K., L. M. Das, M. K. G. Babu, P. Arora, V. P. Singh, N. R. Kumar, and T. S. Varyani. 2009b. Comparative evaluation of performance and emission characteristics of jatropha, karanja and polanga based biodiesel as fuel in a tractor engine. Fuel 88:1698–707. doi:10.1016/j.fuel.2009.02.015.
  • Sahoo, P. K., L. M. Das, M. K. G. Babu, and S. N. Naik. 2007. Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel 86 (3):448–54. doi:10.1016/j.fuel.2006.07.025.
  • Sevinc, A. H., M. Y. Durgun, and M. Eken. 2017. A Taguchi approach for investigating the engineering properties of concretes incorporating barite, colemanite, basaltic pumice and ground slag. Construction and Building Materials 135:343–51. doi:10.1016/j.conbuildmat.2016.12.209.
  • Sharma, Y. C., and B. Singh. 2009. Development of biodiesel: Current scenario. Renewable and Sustainable Energy Reviews 13 (6–7):1646–51. doi:10.1016/j.rser.2008.08.009.
  • Sharrma, A., P. K. Sahoo, R. K. Tripathi, and L. C. Meher. 2016. Artificial neural network-based prediction of performance and emission characteristics of CI engine using polanga as a biodiesel. International Journal of Ambient Energy 37 (6):559–70. doi:10.1080/01430750.2015.1023466.
  • Silitonga, A. S., T. M. I. Mahila, H. C. Ong, T. M. I. Riayatsyah, F. Kusumo, H. Ibrahim, S. Dharma, and D. Gumilang. 2017. A comparative study of biodiesel production methods for Reutealis trisperma biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (20):2006–14. doi:10.1080/15567036.2017.1399174.
  • Sivaraja, C. M., and G. Sakthivel. 2017. Compression ignition engine performance modeling using hybrid MCDM techniques for the selection of optimum fish oil biodiesel blend at different injection timings. Energy 139:118–41. doi:10.1016/j.energy.2017.07.134.
  • Suresh, K., R. Velraj, and R. Ganesan. 2008. Performance and exhaust emission characteristics of a CI engine fuelled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Renewable Energy 33 (10):2294–302. doi:10.1016/j.renene.2008.01.011.
  • Vedharaj, S., R. Vallinayagam, W. M. Yang, C. G. Saravanam, and P. S. Lee. 2015. Optimization of combustion bowl geometry for the operation of kapok biodiesel-Diesel blends in a stationary diesel engine. Fuel 139:561–67. doi:10.1016/j.fuel.2014.09.020.
  • Wilson, V. H., and Udaykumar. 2010. Optimization of diesel engine parameters using Taguchi method and design of evolution. Journal of the Brazilian Society of Mechanical Sciences and Engineering 34 (4):423–28. doi:10.1590/S1678-58782012000400001.
  • Wong, P. K., K. I. Wong, C. M. Vong, and C. S. Cheung. 2015. Modeling and optimization of biodiesel engine performance using Kernel based extreme machine and cuckoo search. Renewable Energy 74:640–47. doi:10.1016/j.renene.2014.08.075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.