198
Views
10
CrossRef citations to date
0
Altmetric
Review

Experimental exploration and theoretical certainty of thermal conductivity and viscosity of MgO-therminol 55 nanofluid

, , , ORCID Icon, ORCID Icon &
Pages 451-467 | Received 16 Apr 2018, Accepted 27 Aug 2018, Published online: 27 Sep 2018

References

  • Batchelor, G. K. 1977. The effect of brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics 83 (1):97–117. doi:10.1017/S0022112077001062.
  • Brinkman, H. C. 1952. The viscosity of concentrated suspensions and solution. Journal of Chemical Physics 20:571–81. doi:10.1063/1.1700493.
  • Cabaleiro, D., J. Nimo, M. J. Pasteriza-Gallego, L. Lugo, and M. M. Pineiro. 2015. Thermal conductivity of anatase and rutile nanopowders and ethylene glycol and propylene glycol based tio2 nano fluids. Journal of Chemical Thermodynamics 83:67–76. doi:10.1016/j.jct.2014.12.001.
  • Chakraborty, S., J. Mukherjee, M. Manna, P. Ghosh, S. Das, and M. B. Denys. 2012. Effect of Ag nanoparticle addition and ultrasonic treatment on a stable TiO2 nanofluid. Ultrasonics Sonochemistry 19:1044–50. doi:10.1016/j.ultsonch.2012.01.016.
  • Chandrasekhar, M., S. Suresh, and A. Chandrabose. 2010. Experimental investigations and theoretical determination of effective thermal conductivity and viscosity. Experimental Thermal and Fluid Science 34:210–16. doi:10.1016/j.expthermflusci.2009.10.022.
  • Choi, C., H. S. Yoo, and J. M. Oh. 2008. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Current Applications Physical 8:710–12. doi:10.1016/j.cap.2007.04.060.
  • Das, S. K., N. Putra, P. Thiesen, and W. Roetzel. 2003. Temperature dependence of thermal conductivity enhancement for nanofluids. ASME 125:567–75. doi:10.1115/1.1571080.
  • Doungthunsuk, W., and S. WongWises. 2009. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Experimental Thermal and Fluid Science 33:706–14. doi:10.1016/j.expthermflusci.2009.01.005.
  • Drew, D. A., and S. L. Passman. 2000. Theory of multi component fluids, applied mathematical sciences, 135. Berlin: Springer.
  • Hamilton, R. L., and O. K. Crosser. 1962. Thermal conductivity of heterogeneous two component systems. Industrial & Engineering Chemistry Fundamentals 1 (3):187–91. doi:10.1021/i160003a005.
  • Harifi-Mood, A., and R. Buchner. 2017. Density, viscosity, and conductivity of choline chloride + ethylene glycol as a deep eutectic solvent and its binary mixtures with dimethyl sulfoxide. Journal of Molecular Liquids 225:689–95. doi:10.1016/j.molliq.2016.10.115.
  • Hussein, A. K., D. Li, L. Kolsi, S. Kata, and B. Sahoo. 2017. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia 109:417–24. doi:10.1016/j.egypro.2017.03.044.
  • Kai, W., G. Hong-Hua, F. Wang, and H.-W. Zhou. 2017. Corrosion behaviour of brass in Tio2 nanofluids. Materials Science and Engineering 230 (1):012011. doi:10.1088/1757-899X/230/1/012011
  • Krishna Moorthy, S., C. H. Ashok, K. Venkateswara Rao, and C. Viswanath. 2015. Facile synthesis and characterization of ZnO/CuO nanocomposite for humidity sensor application. Materials Today: Proceedings 2:4360–68.
  • Minsta, H. A., G. Roy, and C. T. Dominique. 2009. New temperature dependent thermal conductivity data for water based nanofluids. International Journal of Thermal Sciences 48:363–71. doi:10.1016/j.ijthermalsci.2008.03.009.
  • Mousavi, N. S. S., and S. Kumar. 2014. Effective heat capacity of ferrofluids. International Journal of Thermal Sciences 84:267–74. doi:10.1016/j.ijthermalsci.2014.05.012.
  • Muraleedharan, M., H. Singh, S. Suresh, and M. Udaykumar. 2016. directly absorbing therminol-Al2O3 nano heat transfer fluid for linear solar concentrating collectors. Solar Energy 137:134–42. doi:10.1016/j.solener.2016.08.007.
  • Murshed, S. M. S., K. C. Leong, and C. Yang. 2005. Enhanced thermal conductivity of TiO2- water based nanofluids. International Journal of Thermal Sciences 44:367–71. doi:10.1016/j.ijthermalsci.2004.12.005.
  • Namburu, P. K., D. P. Kulkarni, D. Mishra, and D. K. Das. 2007. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Experimental Thermal and Fluid Science 32:397–402. doi:10.1016/j.expthermflusci.2007.05.001.
  • Naphon, P., P. Assadamongkol, and T. Borirak. 2008. Experimental investigation of titanium nanofluids on heat pipe thermal efficiency. International Communications in Heat and Mass Transfer 53:1316–19. doi:10.1016/j.icheatmasstransfer.2008.07.010.
  • Naresh, Y., A. Dhivya, K. S. Suganthi, and K. S. Ranjan. 2012. High temperature thermo physical properties of novel cup-therminol nanofluids. Nanoscience and Nanotechnology Letters 4 (12):1209–13.
  • Timofeeva, E. V., A. N. Gavrilov, J. M. McCloskey, and Y. V. Tolmachev. 2007. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Physical Physical Reviews E 76:061203. doi:10.1103/PhysRevE.76.061203.
  • Venkitaraj, K. P., S. Suresh, T. Alwin Mathew, B. S. Bibin, and J. Abraha. 2017. An experimental investigation on heat transfer enhancement in the laminar flow of water/TiO2 nanofluid through a tube heat exchanger fitted with modified butterfly inserts. Heat and Mass Transfer 54 (3):813–29.
  • Wang, X., X. Xu, and S. U. S. Choi. 1999. Thermal conductivity of nanoparticles–Fluid mixture. Journal of Thermophysics Heat Transfer 13 (4):474–80. doi:10.2514/2.6486.
  • Warrier, P., and A. Teja. 2011. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Research Letters 6:247. doi:10.1186/1556-276X-6-247.
  • Xuan, Y., and Q. Li. 2003. Convection heat transfer and flow features of nanofluids. Journal of Heat Transfer 125 (1):151–55. doi:10.1115/1.1532008.
  • Yang, L., and X. Xu. 2017. A renovated hamilton –crosser model for the effective thermal conductivity of CNTs nanofluids. International Communications of Heat and Mass Transfer 81:42–50. doi:10.1016/j.icheatmasstransfer.2016.12.010.
  • Yousefi, T., and F. Veisy. 2012. An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors. Experimental Thermal and Fluid Science 39:207–12. doi:10.1016/j.expthermflusci.2012.01.025.
  • Yu, W., H. Xie, L. Chen, and Y. Li. 2009. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochimica Acta 491 (1):92–96. doi:10.1016/j.tca.2009.03.007.
  • Yu, W., and S. U. S. Choi. 2003. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated maxwell model. Journal of Nanoparticle Research 5:167–71. doi:10.1023/A:1024438603801.
  • Zena, D. R., K. Kadhim, D. R. Muna, S. Kassim, and A. Y. Abdul Hassan. 2016. Effect of mgo nanofluids in heat transfer characteristics in internal finned heat exchanger. International Journal of Mechanical Engineering and Technology 7 (2):11–24.
  • Zyla, G. 2017. Viscosity and thermal conductivity of MgO-EG Nanofluids. Journal of Thermal Analysis and Calorimetry 129:171–80. doi:10.1007/s10973-017-6130-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.