412
Views
15
CrossRef citations to date
0
Altmetric
Articles

Determination of the economical insulation thickness of building envelopes simultaneously in energy-saving renovation of existing residential buildings

, , , &
Pages 665-676 | Received 23 Jun 2018, Accepted 22 Aug 2018, Published online: 08 Oct 2018

References

  • Aktacir, M. A., O. Buyukalaca, and T. Yilmaz. 2010. A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions. Applications Energy 87:599–607. doi:10.1016/j.apenergy.2009.05.008.
  • Arumugam, R. S., V. Garg, V. V. Ram, et al. 2015. Optimizing roof insulation for roofs with high albedo coating and radiant barriers in India. Journal Build Engineering 2:52–58. doi:10.1016/j.jobe.2015.04.004.
  • Axaopoulos, I., P. Axaopoulos, and J. Gelegenis. 2014. Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind. Applications Energy 117:167–75. doi:10.1016/j.apenergy.2013.12.008.
  • Carreras, J., D. Boer, G. Guillen-Gosalbez, et al. 2015. Multi-objective optimization of thermal modelled cubicles considering the total cost and life cycle environmental impact. Energy and Buildings 88:335–46. doi:10.1016/j.enbuild.2014.12.007.
  • Cuce, E., P. M. Cuce, C. J. Wood, et al. 2014. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings. Energy and Buildings 77:28–39. doi:10.1016/j.enbuild.2014.03.034.
  • Daouas, N. 2011. A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads. Applications Energy 88:156–64. doi:10.1016/j.apenergy.2010.07.030.
  • Daouas, N. 2016. Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model. Applications Energy 177:136–48. doi:10.1016/j.apenergy.2016.05.079.
  • Hou, E. Z. 2016. Special inspection on the progress of building energy saving and green building in China in 2016. Building Energy Efficiency 45:5.
  • Huang, J., H. Lv, T. Gao, et al. 2014. Thermal properties optimization of envelope in energy-saving renovation of existing public buildings. Energy and Buildings 75:504–10. doi:10.1016/j.enbuild.2014.02.040.
  • Huang, J. E. 2015. Study on the theory and application of coupled heat and moisture transfer in homogeneous material building wall under multi-working condition. In Xuzhou: China University of Mining & Technology.
  • Kayfeci, M., A. Kecebas, and E. Gedik. 2013. Determination of optimum insulation thickness of external walls with two different methods in cooling applications. Applied Thermal Engineering 50:217–24. doi:10.1016/j.applthermaleng.2012.06.031.
  • Kon, O. 2017. Determination of optimum insulation thicknesses using economical analyse for exterior walls of buildings with different masses. International Journal Sciences Optim ControL: Theoretical Applications 7:149.
  • Kurekci, N. A. 2016. Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings 118:197–213. doi:10.1016/j.enbuild.2016.03.004.
  • Liu, X., Y. Chen, H. Ge, et al. 2015. Determination of optimum insulation thickness for building walls with moisture transfer in hot summer and cold winter zone of China. Energy and Buildings 109:361–68. doi:10.1016/j.enbuild.2015.10.021.
  • Nematchoua, M. K., C. R. R. Raminosoa, R. Mamiharijaona, et al. 2015. Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: Case of Cameroon. Renewable Sustainable Energy Reviews 50:1192–202. doi:10.1016/j.rser.2015.05.066.
  • Nyers, J., L. Kajtar, S. Tomic, et al. 2015. Investment-savings method for energy-economic optimization of external wall thermal insulation thickness. Energy and Buildings 86:268–74. doi:10.1016/j.enbuild.2014.10.023.
  • Ozel, M. 2011. Thermal performance and optimum insulation thickness of building walls with different structure materials. Applied Thermal Engineering 31:3854–63. doi:10.1016/j.applthermaleng.2011.07.033.
  • Ozel, M. 2013. Determination of optimum insulation thickness based on cooling transmission load for building walls in a hot climate. Energy Conversion and Management 66:106–14. doi:10.1016/j.enconman.2012.10.002.
  • Ozel, M. 2014. Effect of insulation location on dynamic heat-transfer characteristics of building external walls and optimization of insulation thickness. Energy and Buildings 72:288–95. doi:10.1016/j.enbuild.2013.11.015.
  • Ozkan, D. B., and C. Onan. 2011. Optimization of insulation thickness for different glazing areas in buildings for various climatic regions in Turkey. Applications Energy 88:1331–42. doi:10.1016/j.apenergy.2010.10.025.
  • Sartori, I., A. Napolitano, and K. Voss. 2012. Net zero energy buildings: A consistent definition framework. Energy and Buildings 48:220–32. doi:10.1016/j.enbuild.2012.01.032.
  • Sesana, M. M., and G. Salvalai. 2013. Overview on life cycle methodologies and economic feasibility for nZEBs. Build Environment 67:211–16. doi:10.1016/j.buildenv.2013.05.022.
  • Ucar, A. 2010. Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey. Energy 35:1854–64. doi:10.1016/j.energy.2009.12.022.
  • Vincelas, F. F. C., T. Ghislain, and T. Robert. 2017. Influence of the types of fuel and building material on energy savings into building in tropical region of Cameroon. Applied Thermal Engineering 122:806–19. doi:10.1016/j.applthermaleng.2017.04.028.
  • Yu, J., L. Tian, C. Yang, et al. 2011. Optimum insulation thickness of residential roof with respect to solar-air degree-hours in hot summer and cold winter zone of china. Energy and Buildings 43:2304–13. doi:10.1016/j.enbuild.2011.05.012.
  • Yuan, J., C. Farnham, K. Emura, et al. 2016. Proposal for optimum combination of reflectivity and insulation thickness of building exterior walls for annual thermal load in Japan. Build Environment 103:228–37. doi:10.1016/j.buildenv.2016.04.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.