221
Views
10
CrossRef citations to date
0
Altmetric
Articles

Techno-economic considerations: turning fermentation residues into lightweight concrete

&
Pages 1041-1048 | Received 02 Jun 2018, Accepted 13 Sep 2018, Published online: 25 Oct 2018

References

  • Akhtar, A., and A. K. Sarmah. 2018. Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Science of the Total Environment 616:408–16. doi:10.1016/j.scitotenv.2017.10.319.
  • Arthurson, V. 2009. Closing the global energy and nutrient cycles through application of biogas residue to agricultural land–Potential benefits and drawback. Energies 2 (2):226–42. doi:10.3390/en20200226.
  • Bauer, A., H. Mayr, K. Hopfner-Sixt, and T. Amon. 2009. Detailed monitoring of two biogas plants and mechanical solid–Liquid separation of fermentation residues. Journal of Biotechnology 142 (1):56–63. doi:10.1016/j.jbiotec.2009.01.016.
  • Blankendaal, T., P. Schuur, and H. Voordijk. 2014. Reducing the environmental impact of concrete and asphalt: A scenario approach. Journal of Cleaner Production 66:27–36. doi:10.1016/j.jclepro.2013.10.012.
  • Börjesson, P., and L. M. Tufvesson. 2011. Agricultural crop-based biofuels–Resource efficiency and environmental performance including direct land use changes. Journal of Cleaner Production 19(2-3:108–20. doi:10.1016/j.jclepro.2010.01.001.
  • Clarke, J. L. 2014. Structural lightweight aggregate concrete. London, UK: CRC Press.
  • Duan, N., C. Lin, R. Y. Gao, Y. Wang, J. H. Wang, and J. Hou. 2011. Ecological and economic analysis of planting greenhouse cucumbers with anaerobic fermentation residues. Procedia Environmental Sciences 5:71–76. doi:10.1016/j.proenv.2011.03.050.
  • Feng, H., G. F. Qu, P. Ning, X. F. Xiong, L. J. Jia, Y. K. Shi, and J. Zhang. 2011. The resource utilization of anaerobic fermentation residue. Procedia Environmental Sciences 11:1092–99. doi:10.1016/j.proenv.2011.12.165.
  • Flower, D. J., and J. G. Sanjayan. 2007. Green house gas emissions due to concrete manufacture. The International Journal of Life Cycle Assessment 12 (5):282. doi:10.1065/lca2007.05.327.
  • Gao, T., L. Shen, M. Shen, F. Chen, L. Liu, and L. Gao. 2015. Analysis on differences of carbon dioxide emission from cement production and their major determinants. Journal of Cleaner Production 103:160–70. doi:10.1016/j.jclepro.2014.11.026.
  • Hašková, S. 2017. Holistic assessment and ethical disputation on a new trend in solid biofuels. Science and Engineering Ethics 23 (2):509–19. doi:10.1007/s11948-016-9790-1.
  • Huang, H.-Z. 2010. Composition of and contaminants in anaerobic fermentation residues. Fujian Journal of Agricultural Sciences 1:018.
  • Insam, H., M. Gómez-Brandón, and J. Ascher. 2015. Manure-based biogas fermentation residues–Friend or foe of soil fertility?. Soil Biology and Biochemistry 84:1–14. doi:10.1016/j.soilbio.2015.02.006.
  • Jeng, Y., and S. P. Shah. 1985. Two parameter fracture model for concrete. Journal of Engineering Mechanics 111 (10):1227–41. doi:10.1061/(ASCE)0733-9399(1985)111:10(1227).
  • Kern, S., M. Halwachs, G. Kampichler, C. Pfeifer, T. Pröll, and H. Hofbauer. 2012. Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant–Influence of pyrolysis temperature on pyrolysis product performance. Journal of Analytical and Applied Pyrolysis 97::1–10. doi:10.1016/j.jaap.2012.05.006.
  • Kim, K. H., S. E. Jeon, J. K. Kim, and S. Yang. 2003. An experimental study on thermal conductivity of concrete. Cement and Concrete Research 33 (3):363–71. doi:10.1016/S0008-8846(02)00965-1.
  • Kodur, V. K. R., and T. Z. Harmathy. 2016. Properties of building materials. In SFPE handbook of fire protection engineering, edited by Hurley, M.J., et al. 277–324. New York, NY: Springer.
  • Kolář, L., S. Kužel, J. Peterka, and J. Borová-Batt. 2010. Agrochemical value of the liquid phase of wastes from fermenters during biogas production. Plant, Soil and Environment 56 (1):23–27. doi:10.17221/180/2009-PSE.
  • Kolář, L., S. Kužel, J. Peterka, P. Štindl, and V. Plát. 2008. Agrochemical value of organic matter of fermenter wastes in biogas production. Plant, Soil and Environment 54 (8):321–28. doi:10.17221/PSE.
  • Kurkcuoglu, M., and K. H. C. Baser. 2003. Studies on Turkish rose concrete, absolute, and hydrosol. Chemistry of Natural Compounds 39 (5):457–64. doi:10.1023/B:CONC.0000011120.71479.7f.
  • Lebuhn, M., F. Liu, H. Heuwinkel, and A. Gronauer. 2008. Biogas production from mono-digestion of maize silage–Long-term process stability and requirements. Water Science and Technology 58 (8):1645–51. doi:10.2166/wst.2008.495.
  • Ling, T. C., and C. S. Poon. 2013. Use of phase change materials for thermal energy storage in concrete: An overview. Construction and Building Materials 46:55–62. doi:10.1016/j.conbuildmat.2013.04.031.
  • Mardoyan, A., and P. Braun. 2015. Analysis of Czech subsidies for solid biofuels. International Journal of Green Energy 12 (4):405–08. doi:10.1080/15435075.2013.841163.
  • Maroušek, J., & Tai Hong Kwan, J. (2013). Use of pressure manifestations following the water plasma expansion for phytomass disintegration. Water Science & Technology 67(8).
  • Maroušek, J. 2013. Use of continuous pressure shockwaves apparatus in rapeseed oil processing. Clean Technologies and Environmental Policy 15 (4):721–25. doi:10.1007/s10098-012-0549-3.
  • Maroušek, J. 2014. Novel technique to enhance the disintegration effect of the pressure waves on oilseeds. Industrial Crops and Products 53:1–5. doi:10.1016/j.indcrop.2013.11.048.
  • Maroušek, J. 2015. Economic analysis of the pressure shockwave disintegration process. International Journal of Green Energy 12 (12):1232–35. doi:10.1080/15435075.2014.895740.
  • Maroušek, J., V. Stehel, M. Vochozka, A. Maroušková, and L. Kolář. 2018a. Postponing of the intracellular disintegration step improves efficiency of phytomass processing. Journal of Cleaner Production 199:173–176.
  • Maroušek, J., L. Kolář, M. Vochozka, V. Stehel, and A. Maroušková. 2018b. Biochar reduces nitrate level in red beet. Environmental Science and Pollution Research 1–4
  • Maroušek, J., A. Maroušková, K. Myšková, J. Váchal, M. Vochozka, and J. Žák. 2015a. Techno-economic assessment of collagen casings waste management. International Journal of Environmental Science and Technology 12 (10):3385–90. doi:10.1007/s13762-015-0840-z.
  • Maroušek, J., L. Kolář, M. Vochozka, V. Stehel, and A. Maroušková. 2017. Novel method for cultivating beetroot reduces nitrate content. Journal of Cleaner Production 168:60–62. doi:10.1016/j.jclepro.2017.08.233.
  • Maroušek, J., R. Zeman, R. Vaníčková, and S. Hašková. 2014. New concept of urban green management. Clean Technologies and Environmental Policy 16 (8):1835–38. doi:10.1007/s10098-014-0736-5.
  • Maroušek, J., S. Hašková, A. Maroušková, K. Myšková, R. Vaníčková, J. Váchal, and J. Žák. 2015c. Financial and biotechnological assessment of new oil extraction technology. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (16):1723–28. doi:10.1080/15567036.2015.1048391.
  • Maroušek, J., S. Hašková, R. Zeman, J. Žák, R. Vaníčková, A. Maroušková, and K. Myšková. 2015b. Techno-economic assessment of processing the cellulose casings waste. Clean Technologies and Environmental Policy 17 (8):2441–46. doi:10.1007/s10098-015-0941-x.
  • Maroušek, J., S. Itoh, O. Higa, Y. Kondo, M. Ueno, R. Suwa, and Y. Kawamitsu. 2012. The use of underwater high‐voltage discharges to improve the efficiency of Jatropha curcas L. biodiesel production. Biotechnology and Applied Biochemistry 59 (6):451–56. doi:10.1002/bab.1045.
  • Maroušek, J., S. Itoh, O. Higa, Y. Kondo, M. Ueno, R. Suwa, and Y. Kawamitsu. 2013. Pressure Shockwaves to enhance oil extraction from jatropha curcas L. Biotechnology & Biotechnological Equipment 27 (2):3654–58. doi:10.5504/BBEQ.2012.0143.
  • Mo, K. H., U. J. Alengaram, M. Z. Jumaat, S. P. Yap, and S. C. Lee. 2016. Green concrete partially comprised of farming waste residues: A review. Journal of Cleaner Production 117:122–38. doi:10.1016/j.jclepro.2016.01.022.
  • Morabito, P. 1989. Measurement of the thermal properties of different concretes. High Temperatures. High Pressures 21 (1):51–59.
  • Nkoa, R. 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agronomy for Sustainable Development 34 (2):473–92. doi:10.1007/s13593-013-0196-z.
  • Quakernack, R., A. Pacholski, A. Techow, A. Herrmann, F. Taube, and H. Kage. 2012. Ammonia volatilization and yield response of energy crops after fertilization with biogas residues in a coastal marsh of Northern Germany. Agriculture, Ecosystems & Environment 160:66–74. doi:10.1016/j.agee.2011.05.030.
  • Song, P. S., and S. Hwang. 2004. Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials 18 (9):669–73. doi:10.1016/j.conbuildmat.2004.04.027.
  • Stefaniuk, M., P. Bartmiński, K. Różyło, R. Dębicki., and P. Oleszczuk. 2015. Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil. Journal of Hazardous Materials 298:195–202. doi:10.1016/j.jhazmat.2015.05.026.
  • Su, W., H. Ma, Q. Wang, J. Li, and J. Ma. 2013. Thermal behavior and gaseous emission analysis during co-combustion of ethanol fermentation residue from food waste and coal using TG–FTIR. Journal of Analytical and Applied Pyrolysis 99:79–84. doi:10.1016/j.jaap.2012.10.023.
  • Telesiński, A., K. Cybulska, M. Płatkowski, M. Stręk, G. Jarnuszewski, I. Wrońska, and P. Kołosowski. 2017. Integrated assessment of soil quality after application of the biogas fermentation residues–A laboratory experiment. In E3S Web of Conferences, Wrocław, Poland. p. 00176. EDP Sciences.
  • Vochozka, M., A. Maroušková, J. Váchal, and J. Straková. 2016. Biochar pricing hampers biochar farming. Clean Technologies and Environmental Policy 18 (4):1225–31. doi:10.1007/s10098-016-1113-3.
  • Wachendorf, M., F. Richter, T. Fricke, R. Graß, and R. Neff. 2009. Utilization of semi‐natural grassland through integrated generation of solid fuel and biogas from biomass. I. Effects of hydrothermal conditioning and mechanical dehydration on mass flows of organic and mineral plant compounds, and nutrient balances. Grass and Forage Science 64 (2):132–43. doi:10.1111/gfs.2009.64.issue-2.
  • Zheng, J. J., and C. Q. Li. 2002. Three-dimensional aggregate density in concrete with wall effect. Materials Journal 99 (6):568–75.
  • Zöhrer, H. 2013. Hydrothermal gasification of fermentation residues for SNG-production (Doctoral dissertation, ETH Zurich).
  • Zöhrer, H., E. De Boni, and F. Vogel. 2014. Hydrothermal processing of fermentation residues in a continuous multistage rig–Operational challenges for liquefaction, salt separation, and catalytic gasification. Biomass and Bioenergy 65:51–63. doi:10.1016/j.biombioe.2014.03.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.