233
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effect of calcite/activated carbon-based post-combustion CO2 capture system in a biodiesel-fueled CI engine—An experimental study

ORCID Icon, &
Pages 1972-1982 | Received 27 Jul 2018, Accepted 08 Oct 2018, Published online: 01 Dec 2018

References

  • Arif, M., M. Lebedev, A. Barifcani, and S. Iglauer. 2017. CO2 storage in carbonates: Wettability of calcite. International Journal of Greenhouse Gas Control 62:113–21. doi:10.1016/j.ijggc.2017.04.014.
  • Ashok, B., K. Nanthagopal, A. K. Jeevanantham, P. Bhowmick, D. Malhotra, and P. Agarwal. 2017a. An assessment of Calophyllum inophyllum biodiesel fuelled diesel engine characteristics using novel antioxidant additives. Energy Conversion and Management 148:935–43. doi:10.1016/j.enconman.2017.06.049.
  • Ashok, B., K. Nanthagopal, and D. S. Vignesh. 2017b. Calophyllum inophyllum methyl ester biodiesel blend as an alternate fuel for diesel engine applications. Alexandria Engineering Journal 57 (3): 1239–1247. doi:10.1016/j.aej.2017.03.042.
  • Bikkina, P. K. 2011. Contact angle measurements of CO2–water–quartz/calcite systems in the perspective of carbon sequestration. International Journal of Greenhouse Gas Control 5 (5):1259–71. doi:10.1016/j.ijggc.2011.07.001.
  • Chandel, S. S., R. Shrivastva, V. Sharma, and P. Ramasamy. 2016. Overview of the initiatives in renewable energy sector under the national action plan on climate change in India. Renewable and Sustainable Energy Reviews 54:866–73. doi:10.1016/j.rser.2015.10.057.
  • Conesa, J. A., M. Sakurai, and M. J. Antal Jr. 2000. Synthesis of a high-yield activated carbon by oxygen gasification of macadamia nut shell charcoal in hot, liquid water. Carbon 38 (6):839–48. doi:10.1016/S0008-6223(99)00182-7.
  • Darlington, T. L., and D. Kahlbaum. 2008. Evaluation of California greenhouse gas standards and federal energy independence and security act-Part 2: CO2 and GHG impacts (No. 2008-01-1853). United States: SAE Technical Paper.
  • Farokhpoor, R., B. J. Bjørkvik, E. Lindeberg, and O. Torsæter. 2013. Wettability behaviour of CO2 at storage conditions. International Journal of Greenhouse Gas Control 12:18–25. doi:10.1016/j.ijggc.2012.11.003.
  • Fattah, I. R., H. H. Masjuki, M. A. Kalam, M. A. Wakil, A. M. Ashraful, and S. A. Shahir. 2014. Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors. Energy Conversion and Management 83:232–40. doi:10.1016/j.enconman.2014.03.069.
  • Hasegawa, M., Y. Sakurai, Y. Kobayashi, N. Oyama, M. Sekimoto, and H. Watanabe. 2007. Effects of fuel properties (content of FAME or GtL) on diesel emissions under various driving modes (No. 2007-01-4041). United States: SAE Technical Paper.
  • Hausberger, S. 1998. Scenarios for the future energy demand and CO2-emissions from the global transport sector (No. 982216). United States: SAE Technical Paper.
  • Hayashi, J. I., T. Horikawa, I. Takeda, K. Muroyama, and F. N. Ani. 2002. Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40 (13):2381–86. doi:10.1016/S0008-6223(02)00118-5.
  • Holman, J. P. 2004. Experimental techniques for engineers. New Delhi: Tata McGraw Hill.
  • Ibrahim, M. H., M. H. El-Naas, Z. Zhang, and B. Van der Bruggen. 2018. CO2 capture using hollow fiber membranes: A review of membrane wetting. Energy & Fuels 32 (2):963–78. doi:10.1021/acs.energyfuels.7b03493.
  • IPCC. 2007. Climate change 2007: The physical science basis. Cambridge, UK: Cambridge University Press.
  • Kacem, M., M. Pellerano, and A. Delebarre. 2015. Pressure swing adsorption for CO2/N2 and CO2/CH4 separation: Comparison between activated carbons and zeolites performances. Fuel Processing Technology 138:271–83. doi:10.1016/j.fuproc.2015.04.032.
  • Kelly, J. F., M. Stanciulescu, and J. P. Charland. 2006. Evaluation of amines for the selective catalytic reduction (SCR) of NOx from diesel engine exhaust. Fuel 85 (12–13):1772–80. doi:10.1016/j.fuel.2006.01.024.
  • Mishima, H., K. Hashmoto, T. Ono, and M. Anpo. 1998. Selective catalytic reduction of NO with NH3 over natural zeolites and its application to stationary diesel engine exhaust. Applied Catalysis B: Environmental 19 (2):119–26. doi:10.1016/S0926-3373(98)00071-X.
  • Nanthagopal, K., B. Ashok, and R. T. K. Raj. 2016. Influence of fuel injection pressures on Calophyllum inophyllummethyl ester fuelled direct injection diesel engine. Energy Conversion and Management 116:165–73. doi:10.1016/j.enconman.2016.03.002.
  • Nwaoha, C., C. Saiwan, P. Tontiwachwuthikul, T. Supap, W. Rongwong, R. Idem, M. J. AL-Marri, and A. Benamor. 2016. Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. Journal of Natural Gas Science and Engineering 33:742–50. doi:10.1016/j.jngse.2016.06.002.
  • Radhakrishnan, K., S. Kalyanasundharam, N. Ravichandran, S. Thiyagarajan, and W. Richard Thilagaraj. 2018. A novel method of unburned hydrocarbons and NOx gases capture from vehicular exhaust using natural biosorbent. Separation Science and Technology 53 (1):13–21. doi:10.1080/01496395.2017.1380046.
  • Rico-Pérez, V., J. M. García-Cortés, C. S. M. De Lecea, and A. Bueno-López. 2013. NOx reduction to N2 with commercial fuel in a real diesel engine exhaust using a dual bed of Pt/beta zeolite and RhOx/ceria monolith catalysts. Chemical Engineering Science 104:557–64. doi:10.1016/j.ces.2013.09.052.
  • Silitonga, A. S., H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, and W. T. Chong. 2014. Biodiesel conversion from high FFA crude jatrophacurcas, calophylluminophyllum and ceibapentandra oil. Energy Procedia 61:480–83. doi:10.1016/j.egypro.2014.11.1153.
  • Siriwardane, R. V., M. S. Shen, E. P. Fisher, and J. A. Poston. 2001. Adsorption of CO2 on molecular sieves and activated carbon. Energy & Fuels 15 (2):279–84. doi:10.1021/ef000241s.
  • Song, C., Y. Kitamura, and S. Li. 2014. Optimization of a novel cryogenic CO2 capture process by response surface methodology (RSM). Journal of the Taiwan Institute of Chemical Engineers 45 (4):1666–76. doi:10.1016/j.jtice.2013.12.009.
  • Stünkel, S., A. Drescher, J. Wind, T. Brinkmann, J. U. Repke, and G. Wozny. 2011. Carbon dioxide capture for the oxidative coupling of methane process–A case study in mini-plant scale. Chemical Engineering Research and Design 89 (8):1261–70. doi:10.1016/j.cherd.2011.02.024.
  • Thiyagarajan, S., V. Edwin Geo, L. J. Martin, and B. Nagalingam. 2017a. Carbon dioxide (CO2) capture and sequestration using biofuels and an exhaust catalytic carbon capture system in a single-cylinder CI engine: An experimental study. Biofuels 1–10. doi:10.1080/17597269.2017.1292019.
  • Thiyagarajan, S., V. E. Geo, L. J. Martin, and B. Nagalingam. 2016. Effects of low carbon biofuel blends with Karanja (Pongamia pinnata) oil methyl ester in a single cylinder CI engine on CO2 emission and other performance and emission characteristics. Nature Environment & Pollution Technology 15:4.
  • Thiyagarajan, S., V. E. Geo, L. J. Martin, and B. Nagalingam. 2017b. Simultaneous reduction of NO–Smoke–CO 2 emission in a biodiesel engine using low-carbon biofuel and exhaust after-treatment system. Clean Technologies and Environmental Policy 19 (5):1271–83. doi:10.1007/s10098-016-1326-5.
  • Thiyagarajan, S., E. G. Varuvel, L. J. Martin, and N. Beddhannan. 2019. Mitigation of carbon footprints through a blend of biofuels and oxygenates, combined with post-combustion capture system in a single cylinder CI engine. Renewable Energy 130:1067–81. doi:10.1016/j.renene.2018.07.010.
  • Wahby, A., J. Silvestre-Albero, A. Sepúlveda-Escribano, and F. Rodríguez-Reinoso. 2012. CO2 adsorption on carbon molecular sieves. Microporous and Mesoporous Materials 164:280–87. doi:10.1016/j.micromeso.2012.06.034.
  • Yeh, A. C., and H. Bai. 1999. Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions. Science of the Total Environment 228 (2–3):121–33. doi:10.1016/S0048-9697(99)00025-X.
  • Zhang, Z., T. N. Borhani, and M. H. El-Naas. 2018. Carbon capture. In Exergetic, energetic and environmental dimensions, 997–1016.Elsevier. doi:10.1016/b978-0-12-813734-5.00056-1.
  • Zhang, Z., H. Li, H. Chang, Z. Pan, and X. Luo. 2018. Machine learning predictive framework for CO 2 thermodynamic properties in solution. Journal of CO2 Utilization 26:152–59. doi:10.1016/j.jcou.2018.04.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.