771
Views
21
CrossRef citations to date
0
Altmetric
Reviews

A thermogravimetric analysis of biomass wastes from the northeast region of Brazil as fuels for energy recovery

, , , , , & ORCID Icon show all
Pages 1557-1572 | Received 18 Apr 2018, Accepted 20 Oct 2018, Published online: 30 Nov 2018

References

  • ASTM D3174. 2012. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal.
  • ASTM D3175. 2011. Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke.
  • ASTM D5865. 2013. Standard Test Method for Gross Calorific Value of Coal and Coke.
  • Balat, M., and H. Balat. 2009. Recent trends in global production and utilization of bioethanol fuel. Applied Energy 86 (11):2273–82. doi:10.1016/j.apenergy.2009.03.015.
  • Berry, M. D., and J. Sessions. 2018. A forest-to-product biomass supply chain in the Pacific Northwest, USA: A multi-product approach. Applied Engineering in Agriculture 34 (1):109–24. doi:10.13031/aea.12384.
  • Berry, M. D., J. Sessions, and R. Zamora-Cristales. 2018. Subregional comparison for forest- to-product biomass supply chains on the Pacific West Coast, USA. Applied Engineering in Agriculture 34 (1):157–74. doi:10.13031/aea.12526.
  • Bryers, R. W. 1996. Fireside slagging, fouling and high-temperature corrosion of heat transfer surface due to impurities in steam raising fuels. Progress in Energy and Combustion Science 22 (1):29–120. doi:10.1016/0360-1285(95)00012-7.
  • Cai, J., Y. He, X. Yub, S. W. Banksb, Y. Yang, X. Zhang, Y. Yu, R. Liu, and A. V. Bridgwater. 2017. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 76:309–22. doi:10.1016/j.rser.2017.03.072.
  • CARD. 2018. Center for Agricultural and Rural Development. Iowa: Accessed September 05, 2018. https://www.card.iastate.edu/.
  • Co2Earth. 2018. Annual global carbon emissions. Accessed September 09, 2018. https://www.co2.earth/global-co2-emissions.
  • DeGroot, F., W. P. Pan, M. D. Rahman, and G. N. Richards. 1988. First chemical events in pyrolysis of wood. Journal of Analytical and Applied Pyrolysis 13 (3):221–31. doi:10.1016/0165-2370(88)80024-X.
  • Demirbas, A. 2005. Potential application of renewable energy sources, biomass combustion problem in boiler power system and combustion related environmental issue. Progress in Energy and Combustion Science 31 (2):171–92. doi:10.1016/j.pecs.2005.02.002.
  • Demirbas, M. F., M. Balat, and H. Balat. 2009. Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management 50 (7):1746–60. doi:10.1016/j.enconman.2009.03.013.
  • Di Blasi, C., C. Branca, A. Santoro, and E. G. Hernandez. 2001. Pyrolytic behavior and products of some wood varieties. Combustion and Flame 124 (1–2):165–77. doi:10.1016/S0010-2180(00)00191-7.
  • Easterly, J. L., and M. Burnham. 1996. Overview of biomass and waste fuel resources for power production. Biomass and Bioenergy 10 (2–3):79–92. doi:10.1016/0961-9534(95)00063-1.
  • Eggink, A., K. Palmer, M. Severy, D. Carter, and A. Jacobson. 2018. Utilization of wet forest biomass as both the feedstock and electricity source for an integrated biochar production system. Applied Engineering in Agriculture 34 (1):125–34. doi:10.13031/aea.12404.
  • EPA. 2018. Coal Ash (Coal Combustion Residuals, or CCR). Accessed September 09, 2018. https://www.epa.gov/coalash.
  • EPE. Empresa de Pesquisa Energética. 2017. National energy balance. Acessed September 07, 2018. https://ben.epe.gov.br.
  • European Commission. 2018. Biofuels. Accessed September 07, 2018. https://ec.europa.eu/energy/en/topics/renewable-energy/biofuels.
  • García, R., C. Pizarro, A. G. Lavín, and J. L. Bueno. 2013. Biomass proximate analysis using thermogravimetry. Bioresource Technology 139:1–4. doi:10.1016/j.biortech.2013.03.197.
  • Gaur, S., and T. B. Reed. 1998. Thermal data for natural and synthetic fuels. New York: CRC Press.
  • Goenka, R., P. Parthasarathy, N. Kumar, G. Navneet, K. Biyahut, and S. Narayanan. 2015. Kinetic analysis of biomass and comparison of its chemical compositions by thermogravimetry, wet and experimental furnace methods. Waste and Biomass Valorization 6 (6):989–1002. doi:10.1007/s12649-015-9402-3.
  • Gómez, C. J., E. Mészáros, E. Jakab, E. Velo, and L. Puigjaner. 2007. Thermogravimetry/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA techniques. Journal of Analytical and Applied Pyrolysis 80 (2):416–26. doi:10.1016/j.jaap.2007.05.003.
  • Haykiri-Açma, H. 2003. Combustion characteristics of different biomass materials. Energy Conversion and Management 44:155–62. doi:10.1016/S0196-8904(01)00200-X.
  • IBGE. 2006. Brazilian Institute of Geography and Statistics. Censo Agropecuário 2006. Acessed April 30, 2015. http://www.ibge.gov.br.
  • IBGE. 2013. Brazilian Institute of Geography and Statistics. Produção Agrícola Municipal: Culturas Temporárias e Permanentes. Acessed May 5, 2015. http://www.ibge.gov.br.
  • IEA. International Energy Agency. 2014. World energy outlook. Paris: IEA.
  • IEA. International Energy Agency. 2017. World energy outlook. Paris: IEA.
  • Jakab, E., O. Faix, and F. Till. 1997. Thermal decomposition of milled wood lignins studied by termogravimetry/mass spectrometry. Journal of Analytical and Applied Pyrolysis 40–41:171–86. doi:10.1016/S0165-2370(97)00046-6.
  • Jenkins, B. M., L. L. Baxter, and J. Koppejan. 2011. Thermochemical processing of biomass: Conversion into fuels, chemicals and power. In Biomass combustion, ed. R. C. Brown, 13–46. Chichester, UK: John Wiley & Sons.
  • Kalt, G. 2015. Biomass streams in Austria: Drawing a complete picture of biogenic material flows within the national economy. Resources, Conservation and Recycling 95:100–11. doi:10.1016/j.resconrec.2014.12.006.
  • Keoleian, G. A., and T. A. Volk. 2005. Renewable energy from willow biomass crops: Life cycle energy, environmental and economic performance. Critical Reviews in Plant Sciences 24:385–406. doi:10.1080/07352680500316334.
  • Kim, -S.-S., A. Shenoy, and F. A. Agblevor. 2014. Thermogravimetric and kinetic study of Pinyon pine in the various gases. Bioresource Technology 156:297–302. doi:10.1016/j.biortech.2014.01.066.
  • Kok, M. V., and E. Özgür. 2013. Thermal analysis and kinetics of biomass samples. Fuel Processing Technology 106:739–43. doi:10.1016/j.fuproc.2012.10.010.
  • Krishnan, V., and J. D. Mccalley. 2016. The role of bio-renewables in national energy and transportation systems portfolio planning for low carbon economy. Renewable Energy 91:207–23. doi:10.1016/j.renene.2016.01.052.
  • Kumar, S., and P. Ghosh. 2018. Sustainable bio-energy potential of perennial energy grass from reclaimed coalmine spoil (marginal sites) of India. Renewable Energy 123:475–85. doi:10.1016/j.renene.2018.02.054.
  • Lapuerta, M., J. J. Hernández, and J. Rodríguez. 2004. Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass and Bioenergy 27 (4):385–91. doi:10.1016/j.biombioe.2003.11.010.
  • Liu, N. A., W. Fan, R. Dobashi, and L. Huang. 2002. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. Journal of Analytical and Applied Pyrolysis 63 (2):303–25. PII: S0165-2370(01)00161-9. doi:10.1016/S0165-2370(01)00161-9.
  • Lora, E. S., and R. V. Andrade. 2009. Biomass as energy source in Brazil. Renewable and Sustainable Energy Reviews 13 (4):777–88. doi:10.1016/j.rser.2007.12.004.
  • Luz, F. C., M. H. Rocha, E. E. S. Lora, O. J. Venturini, R. V. Andrade, M. M. V. L. Leme, and O. O. Almazán. 2015. Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy Conversion and Management 103:321–37. doi:10.1016/j.enconman.2015.06.074.
  • Mao, G., N. Huanga, L. Chenb, and H. Wang. 2018. Research on biomass energy and environment from the past to the future: A bibliometric analysis. Science of the Total Environment 635:1081–90. doi:10.1016/j.scitotenv.2018.04.173.
  • Masnadi, M. S., J. R. Grace, X. T. Bi, C. J. Lim, N. Ellis, Y. H. Li, and A. P. Watkinson. 2015. From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed. Renewable Energy 83:918–30. doi:10.1016/j.renene.2015.05.044.
  • Mayoral, M. V., M. T. Izquierdo, J. M. Andrés, and B. Rubio. 2001. Different approaches to proximate analysis by thermogravimetry analysis. Thermochimica Acta 370 (1–2):91–97. doi:10.1016/S0040-6031(00)00789-9.
  • Ministério da Agricultura, do Desenvolvimento Rural e das Pescas. 2005. Biomassa e Energias Renováveis na Agricultura, Pescas e Florestas. Grupo de Trabalho de “Energias Alternativas”. Portugal: GT MADRP - Energias Alternativas.
  • Mola-Yudego, B., and P. Pelkonen. 2008. The effects of policy incentives in the adoption of willow short rotation coppice for bioenergy in Sweden. Energy Policy 36 (8):3062–68. doi:10.1016/j.enpol.2008.03.036.
  • NBR13999. 2003. Paper, board,pulps and wood-Determination of residue (ash) on ignation at 525°C.
  • NBR8112. 1986. Carvão vegetal - Análise imediata.
  • Ooba, M., T. Fujita, M. Mizuochi, M. Fujii, T. Machimura, and T. Matsui. 2012. Sustainable use of regional wood biomass in Kushida River Basin, Japan. Waste and Biomass Valorization 3 (4):425–33. doi:10.1007/s12649-012-9157-z.
  • Paiva, G. M. S., A. R. Freitas, F. X. Nobre, C. M. S. Leite, J. M. E. Matos, and M. A. S. Rios. 2015. Kinetic and thermal stability study of hydrogenated cardanol and alkylated hydrogenated cardanol. Journal of Thermal Analysis and Calorimetry. 120 (3):1617–25. doi:10.1007/s10973-015-4528-x.
  • Parikka, M. 2004. Global biomass fuel resources. Biomass and Bioenergy 27 (6):613–20. doi:10.1016/j.biombioe.2003.07.005.
  • Saidur, R. 2011. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews 15 (5):2262–89. doi:10.1016/j.rser.2011.02.015.
  • Saidur, R., E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef. 2011. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews 15 (5):2262–89. doi:10.1016/j.rser.2011.02.015.
  • Saxena, R. C., D. K. Adhikari, and H. B. Goyal. 2009. Biomass-based energy fuel through biochemical routes: Areview. Renewable and Sustainable Energy Reviews 13 (1):167–78. doi:10.1016/j.rser.2007.07.011.
  • Severy, M. A., C. E. Chamberlin, A. J. Eggink, and A. E. Jacobson. 2018. Demonstration of a Pilot-Scale Plant for Biomass Torrefaction and Briquetting. Applied Engineering in Agriculture 34 (1):85–98. doi:10.13031/aea.12376.
  • Sousa Rios, M. A., and S. E. Mazzetto. 2013. Effect of organophosphate antioxidant on the thermo-oxidative degradation of a mineral oil. Journal of Thermal Analysis and Calorimetry. 111 (1):553–59. doi:10.1007/s10973-011-2160-y.
  • Stanislav, V., D. B. Vassilev, L. K. Andersen, and C. G. Vassileva. 2010. An overview of the chemical composition of biomass. Fuel 89 (5):913–33. doi:10.1016/j.fuel.2009.10.022.
  • Statista. 2018. Advanced biofuel production in the United States from 2009 and 2022 (in billion gallons). Accessed September 07, 2018. https://www.statista.com/statistics/281634/us-advanced-biofuel-production/.
  • Stern, N. 2007. The economics of climate change: The stern review. Cambridge, MA: Cambridge University Press.
  • Strandberg, A., P. Holmgren, and M. Broström. 2017. Predicting fuel properties of biomass using thermogravimetry and multivariate data analysis. Fuel Processing Technology 156:107–12. doi:10.1016/j.fuproc.2016.10.021.
  • Strezov, V., B. Moghtaderi, and J. A. Lucas. 2004. Computational calorimetric investigation of the reactions during thermal conversion of wood biomass. Biomass and Bioenergy 27:459–65. doi:10.1016/j.biombioe.2004.04.008.
  • Van Loo, S., and J. Koppejan. 2008. The handbook of biomass combustion and cofiring. London-Sterling, VA: Earthscan.
  • Várhegyi, G., M. G. Grønli, and C. Di Blasi. 2004. Effects of sample origin, extraction, and hot-water washing on the devolatilization kinetics of chestnut wood. Industrial & Engineering Chemistry Research 43 (10):2356–67. doi:10.1021/ie034168f.
  • Vassilev, S., and C. Vassileva. 2009. A new approach for the combined chemical and mineral classification of the inorganic matter in coal. 1. Chemical and mineral classification systems. Fuel 88 (2):235–45. doi:10.1016/j.fuel.2008.09.006.
  • Vassilev, S., K. Kitano, and C. G. Vassileva. 1997. Relations between ash yield and chemical and mineral composition of coals. Fuel 76 (1):3–8. doi:10.1016/S0016-2361(96)00181-0.
  • Vassilev, S. V., D. Baxter, L. K. Andersen, and C. G. Vassileva. 2010. An overview of the chemical composition of biomass. Fuel 89 (5):913–33. doi:10.1016/j.fuel.2009.10.022.
  • Vassilev, S. V., D. Baxter, L. K. Andersen, and C. G. Vassileva. 2013. An overview of the composition and application of biomass ash. Part 1. Phase–Mineral and chemical composition and classification. Fuel 105:40–76. doi:10.1016/j.fuel.2012.09.041.
  • Vassilev, S. V., D. Baxter, L. K. Andersen, C. G. Vassileva, and T. J. Morgan. 2012. An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33. doi:10.1016/j.fuel.2011.09.030.
  • Vassileva, C., and S. Vassilev. 2005. Behaviour of inorganic matter during heating of Bulgarian coals. 1. Lignites. Fuel Processing Technology 47 (3):163. doi:10.1016/S0140-6701(06)81075-1.
  • WEC. 2016. World energy resources bioenergy | 2016. Accessed September 09, 2018. https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_Bioenergy_2016.pdf.
  • Werkelin, J., B. J. Skrifvars, and M. Hupa. 2005. Ash-forming elements in four Scandinavian wood species Part. 1. Summer harvest. Biomass and Bioenergy 29 (6):451–66. doi:10.1016/j.biombioe.2005.06.005.
  • Wilson, L., W. Yang, W. Blasiak, G. R. Jonh, and C. Mhilu. 2011. Thermal characterization of tropical biomass feedstocks. Energy Conversion and Management 52 (1):191–198. doi:10.1016/j.enconman.2010.06.058.
  • Wongsiriamnuay, T., and N. Tippayawong. 2010. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresource Technology 101 (14):5638–44. doi:10.1016/j.biortech.2010.02.037.
  • Yazdian, F., M. P. Hajiabbas, S. A. Shojaosadati, M. Nosrati, E. Vasheghani-Farahani, M. R. Mehrnia. 2010. Study of hydrodynamics, mass transfer, energy consumption, and biomass production from natural gas in a forced-liquid vertical tubular loop bioreactor. Biochemical Engineering Journal 49 (2):192–200. doi:10.1016/j.bej.2009.12.013.
  • Ye, G., H. Luo, Z. Ren, M. S. Ahmad, -G.-G. Liu, A. Tawab, A. B. Al-Ghafari, U. Omar, M. Gull, and M. A. Mehmood. 2018. Evaluating the bioenergy potential of Chinese Liquor-industry waste through pyrolysis, thermogravimetric, kinetics and evolved gas analyses. Energy Conversion and Management 163:13–21. doi:10.1016/j.enconman.2018.02.049.
  • Zhu, J. Y., and X. Pan. 2010. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource Technology 101 (13):4992–5002. doi:10.1016/j.biortech.2009.11.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.