391
Views
2
CrossRef citations to date
0
Altmetric
Articles

The fabrication of exfoliated graphite sheet-based air cathodes and gel electrolyte for metal-air batteries

&
Pages 1779-1789 | Received 02 Aug 2018, Accepted 09 Nov 2018, Published online: 19 Nov 2018

References

  • Cao, Y. L., H. X. Yang, X. P. Ai, and L. F. Xiao. 2003. The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. Journal of Electroanalytical Chemistry 557:127–34. doi:10.1016/S0022-0728(03)00355-3.
  • Chang, Z., J. Xu, and X. Zhang. 2017. Recent progress in electrocatalyst for Li-O2 batteries. Advanced Energy Materials 7:1700875. doi:10.1002/aenm.v7.23.
  • Cho, Y. J., I. J. Park, H. J. Lee, and J. G. Kim. 2015. Aluminum anode for aluminium air battery Part I: Influence of aluminium purity. Journal of Power Sources 277:370–78. doi:10.1016/j.jpowsour.2014.12.026.
  • Danner, T., S. Eswara, V. P. Schulz, and A. Latz. 2016. Characterization of gas diffusion electrodes for metal-air batteries. Journal of Power Sources 324:646–56. doi:10.1016/j.jpowsour.2016.05.108.
  • Doche, M. L., F. Novel-Cattin, R. Durand, and J. J. Rameau. 1997. Characterization of different grades of aluminum anodes for aluminum/air batteries. Journal of Power Sources 65:197–205. doi:10.1016/S0378-7753(97)02473-7.
  • Doche, M. L., J. J. Rameau, R. Durand, and F. Novel-Cattin. 1999. Electrochemical behaviour of aluminum in concentrated NaOH solutions. Corrosion Science 41:805–26. doi:10.1016/S0010-938X(98)00107-3.
  • Egan, D. R., C. Ponce de León, R. J. K. Wood, R. L. Jones, K. R. Stokes, and F. C. Walsh. 2013. Developments in electrode materials and electrolytes for aluminium air batteries. Journal of Power Sources 236:293–310. doi:10.1016/j.jpowsour.2013.01.141.
  • Fan, L., H. Lu, and J. Leng. 2015. Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Al-air batteries. Electrochimica Acta 165:22–28. doi:10.1016/j.electacta.2015.03.002.
  • Fan, L., H. Lu, J. Leng, Z. Sun, and C. Chen. 2016. The study of industrial aluminum alloy as anodes for aluminum-air batteries in alkaline electrolytes. Journal of the Electrochemical Society 163 (2):A8–A12. doi:10.1149/2.0021602jes.
  • Flegler, A., S. Hartmann, H. Weinrich, M. Kapuschinski, J. Settelein, H. Lorrmann, and G. Sextl. 2016. Manganese oxide coated carbon materials as hybrid catalysts for the application in primary aqueous metal-air batteries. Journal of Carbon Research 2 (1):4–17. doi:10.3390/c2010004.
  • Fu, Z., K. Li, L. Pu1, B. Ge, and Z. Chen. 2016. Waterproof breathable membrane used as gas diffusion layer in activated carbon air cathode microbial fuel cells. Fuel Cells 16 (6):839–44. doi:10.1002/fuce.201500071.
  • Gao, H., Z. Li, and X. Qin. 2014. Synthesis of carbon microspheres loaded with manganese oxide as air cathode in alkaline media. Journal of Power Sources 248:565–69. doi:10.1016/j.jpowsour.2013.09.033.
  • Ge, Z., and Z. He. 2015. An effective dipping method for coating activated carbon catalyst on the cathode electrodes of microbial fuel cells. RSC Advances 5:36933–37. doi:10.1039/C5RA05543A.
  • Ilyukhina, A. V., B. V. Kleymenov, and A. Z. Zhuk. 2017. Development and study of aluminum-air electrochemical generator and its main components. Journal of Power Sources 342:741–49. doi:10.1016/j.jpowsour.2016.12.105.
  • Jiao, S., H. Lei, J. Tu, J. Zhu, J. Wang, and X. Mao. 2016. An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 109:276–81. doi:10.1016/j.carbon.2016.08.027.
  • Jung, S. C., Y. J. Kang, D. J. Yoo, J. W. Choi, and Y. K. Han. 2016. Flexible few- layered graphene for the ultrafast rechargeable aluminum-ion battery. Journal of Physical Chemistry C 120:13384–89. doi:10.1021/acs.jpcc.6b03657.
  • Lee, J., C. Yim, D. W. Lee, and S. S. Park. 2017. Manufacturing and characterization of physically modified aluminum anodes based air battery with electrolyte circulation. International Journal of Precision Engineering and Manufacturing-Green Technology 4:53–57. doi:10.1007/s40684-017-0007-0.
  • Li, N., J. An, L. Zhou, T. Li, J. Li, C. Feng, and X. Wang. 2016. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems. Journal of Power Sources 306:495–502. doi:10.1016/j.jpowsour.2015.12.078.
  • Li, Q., and N. J. Bjerrum. 2002. Aluminum as anode for energy storage and conversion: A review. Journal of Power Sources 110:1–10. doi:10.1016/S0378-7753(01)01014-X.
  • Li, Y., and J. Lu. 2017. Metal–air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Letters 2 (6):1370–77. doi:10.1021/acsenergylett.7b00119.
  • Lin, M. C., M. Gong, B. Lu, Y. Wu, D. Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B. J. Hwang, et al. 2015. An ultrafast rechargeable aluminium-ion battery. Nature 520:324–28. doi:10.1038/nature14340.
  • Liu, B., M. Yang, H. Chen, Y. Liu, D. Yang, and H. Li. 2018. Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. Journal of Power Sources 3967 (1):1–10.
  • Liu, J., D. Wang, D. Zhang, L. Gao, and T. Lin. 2016. Synergistic effects of carboxymethyl cellulose and ZnO as alkaline electrolyte additives for aluminium anodes with a view towards Al-air batteries. Journal of Power Sources 335:1–11. doi:10.1016/j.jpowsour.2016.09.060.
  • Liu, Q., S. Chen, Y. Zhou, S. Zheng, H. Hou, and F. Zhao. 2014. Phosphorus-doped carbon derived from cellulose phosphate as efficient catalyst for air-cathode in microbial fuel cells. Journal of Power Sources 261:245–48. doi:10.1016/j.jpowsour.2014.03.060.
  • Liu, Y., Q. Sun, W. Li, K. R. Adair, J. Li, and X. Sun. 2017. A comprehensive review on recent progress in aluminum-air batteries. Green Energy & Environment 2:246–77. doi:10.1016/j.gee.2017.06.006.
  • Mohamad, A. A. 2008. Electrochemical properties of aluminum anodes in gel electrolyte-based aluminum-air batteries. Corrosion Science 50:3475–79. doi:10.1016/j.corsci.2008.09.001.
  • Mokhtar, M., M. Z. M. Talib, E. H. Majlan, S. M. Tasirin, W. M. F. W. Ramli, W. R. W. Daud, and J. Sahari. 2015. Recent developments in materials for aluminum–Air batteries: A review. Journal of Industrial and Engineering Chemistry 32:1–20. doi:10.1016/j.jiec.2015.08.004.
  • Munuera, J. M., J. I. Paredes, S. Villar-Rodil, M. Ayán-Varela, A. Martínez-Alonso, and J. M. D. Tascón. 2016. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: En route towards high quality, oxide-free graphene flakes. Nanoscale 8:2982–98. doi:10.1039/c5nr06882g.
  • Nnadi, F., and C. Brave. 2011. Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. Journal of Soil Science and Environmental Management 2:206–11.
  • Pino, M., J. Chacón, E. Fatás, and P. Ocón. 2015. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries. Journal of Power Sources 299:195–201. doi:10.1016/j.jpowsour.2015.08.088.
  • Pino, M., C. Cuadrado, J. Chacón, P. Rodríguez, E. Fatás, and P. Ocón. 2014. The electrochemical characteristics of commercial aluminium alloy electrodes for Al/air batteries. Journal of Applied Electrochemistry 44:1371–80. doi:10.1007/s10800-014-0751-6.
  • Rahman, M. A., X. Wang, and C. Wen. 2013. High energy density metal-air batteries: A review. Journal of Electrochemical Society 160 (10):A1759–A1771. doi:10.1149/2.062310jes.
  • Sankar, G. U., C. G. Moorthy, and G. RajKumar. 2018. Synthesizing graphene from waste mosquito repellent graphite rod by using electrochemical exfoliation for battery/supercapacitor applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (10):1209–14. doi:10.1080/15567036.2018.1476609.
  • Songa, S., M. Wu, Y. Liu, Q. Zhu, P. Tsiakaras, and Y. Wang. 2015. Efficient and stable carbon-coated nickel foam cathodes for the electro-fenton process. Electrochimica Acta 176:811–18. doi:10.1016/j.electacta.2015.07.029.
  • Wu, G., A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. Zhang, H. L. Wang, and L. Dai. 2016. Carbon nano composite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy 29:83–110. doi:10.1016/j.nanoen.2015.12.032.
  • Wysocka, J., S. Krakowiak, J. Ryl, and K. Darowicki. 2016. Investigation of the electrochemical behaviour of AA1050 aluminium alloy in aqueous alkaline solutions using dynamic electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry 778:126–36. doi:10.1016/j.jelechem.2016.08.028.
  • Xu, -J.-J., Z.-W. Chang, Y. Wang, D.-P. Liu, Y. Zhang, and X.-B. Zhang. 2016. Cathode surface-induced, solvation-mediated, micrometer-sized Li2O2 cycling for Li–O2 batteries. Advanced Materials 28:9620–28. doi:10.1002/adma.201603454.
  • Xu, -J.-J., Z. –. W. Chang, Y.-B. Yin, and X.-B. Zhang. 2017. Nanoengineered ultralight and robust all-metal cathode for high- capacity, stable lithium−oxygen batteries. ACS Central Science 3:598−604. doi:10.1021/acscentsci.7b00165.
  • Xu, -J.-J., Z.-L. Wang, D. Xu, -L.-L. Zhang, and X.-B. Zhang. 2013a. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nature Communications 4:2438. doi:10.1038/ncomms3438.
  • Xu, J.–J., D. Xu, Z.-L. Wang, H.-G. Wang, -L.-L. Zhang, and X.-B. Zhang. 2013b. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium–oxygen batteries. Angewandte Chemie International Edition 52:3887–90. doi:10.1002/anie.201210057.
  • Yang, W., K. Y. Kim, P. E. Saikaly, and B. E. Logan. 2017. The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy and Environmental Science 10:1025–33. doi:10.1039/C7EE00910K.
  • Young, K., L. Wang, S. Yan, X. Liao, T. Meng, H. Shen, and W. C. Mays. 2017. Fabrications of high-capacity alpha-Ni(OH)2. Batteries 3:6. doi:10.3390/batteries3010006.
  • Zhang, E., F. Wang, Q. Yu, K. Scott, X. Wang, and G. Diao. 2017. Durability and regeneration of activated carbon air-cathodes in longterm operated microbial fuel cells. Journal of Power Sources 360:21–27. doi:10.1016/j.jpowsour.2017.05.119.
  • Zhang, F., S. Cheng, D. Pant, G. V. Bogaert, and B. E. Logan. 2009. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications 11:2177–79. doi:10.1016/j.elecom.2009.09.024.
  • Zhang, P., K. Li, and X. Liu. 2014. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells. Journal of Power Sources 264:248–53. doi:10.1016/j.jpowsour.2014.04.098.
  • Zhang, Z., C. Zuo, Z. Liu, Y. Yu, Y. Zuo, and Y. Song. 2014. All-solid-state Al-air batteries with polymer alkaline gel electrolyte. Journal of Power Sources 251:470–75. doi:10.1016/j.jpowsour.2013.11.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.