297
Views
4
CrossRef citations to date
0
Altmetric
Articles

The auxiliary effect of organic matter humic acids on the anaerobic biodegradation of tetrabromobisphenol A

, , ORCID Icon, , &
Pages 31-40 | Received 15 May 2018, Accepted 07 Jan 2019, Published online: 15 Mar 2019

References

  • Cheng, H., and Z. Hua. 2018. Distribution, release and removal behaviors of tetrabromobisphenol A in water-sediment systems under prolonged hydrodynamic disturbances. Science of the Total Environment 636:402–10. doi:10.1016/j.scitotenv.2018.04.276.
  • Chu, S., and R. J. Letcher. 2013. Halogenated phenolic compound determination in plasma and serum by solid phase extraction, dansylation derivatization and liquid chromatography-positive electrospray ionization-tandem quadrupole mass spectrometry. Journal of Chromatography A 1320 (20):111–17. doi:10.1016/j.chroma.2013.10.068.
  • Fan, M., N. Zhou, P. Li, L. Chen, Y. Chen, S. Shen, and S. Zhu. 2017. Anaerobic co-metabolic biodegradation of tetrabromobisphenol A using a bioelectrochemical system. Journal of Hazardous Materials 321:791–800. doi:10.1016/j.jhazmat.2016.09.068.
  • Garcia‐Mancha, N., D. Puyol, V. M. Monsalvo, H. Rajhi, A. F. Mohedano, and J. J. Rodriguez. 2012. Anaerobic treatment of wastewater from used industrial oil recovery. Journal of Chemical Technology & Biotechnology 87 (9):1320–28. doi:10.1002/jctb.3753.
  • Hurek, T., and B. Reinhold-Hurek. 2003. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. Journal of Biotechnology 106 (2):169–78. doi:10.1016/j.jbiotec.2003.07.010.
  • Kong, Y. M., C. J. Bae, S. H. Lee, H.-W. Kim, and H.-E. Kim. 2005. Improvement in biocompatibility of ZrO2–Al2O 3 nano-composite by addition of HA. Biomaterials 26 (5):509–17. doi:10.1016/j.biomaterials.2004.02.061.
  • Li, D., Z. Mao, Y. Zhong, W. Huang, Y. Wu, and P. Peng. 2016a. Reductive transformation of tetrabromobisphenol A by sulfidated nano zerovalent iron. Water Research 103:1–9. doi:10.1016/j.watres.2016.07.003.
  • Li, T., Y. Jiang, X. An, H. Liu, C. Hu, and J. Qu. 2016b. Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes. Water Research 102:421–27. doi:10.1016/j.watres.2016.06.051.
  • Lipczynska-Kochany, E. 2018. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere 202:420–37. doi:10.1016/j.chemosphere.2018.03.104.
  • Liu, H., J. Guo, J. Qu, J. Lian, Y. Guo, W. Jefferson, and J. Yang. 2012. Biological catalyzed denitrification by a functional electropolymerization biocarrier modified by redox mediator. Bioresource Technology 107:144–50. doi:10.1016/j.biortech.2011.12.071.
  • Luo, W., Y. Zhao, H. Ding, X. Lin, and H. Zheng. 2008. Co-metabolic degradation of bensulfuron-methyl in laboratory conditions. Journal of Hazardous Materials 158 (1):208–14. doi:10.1016/j.jhazmat.2008.02.115.
  • Ma, Y., L. Chen, and J. Qiu. 2013. Biodegradation of beta-cypermethrin by a novel Azoarcus indigens strain HZ5. Journal of Environmental Science and Health, Part B 48 (10):851–59. doi:10.1080/03601234.2013.795843.
  • Moreira, I. S., C. L. Amorim, M. F. Carvalho, and P. M. L. Castro. 2012. Co-metabolic degradation of chlorobenzene by the fluorobenzene degrading wild strain Labrys portucalensis. International Biodeterioration & Biodegradation 72 (4):76–81. doi:10.1016/j.ibiod.2012.05.013.
  • Peng, X., X. Qu, W. Luo, and X. Jia. 2014. Co-metabolic degradation of tetrabromobisphenol A by novel strains of Pseudomonas sp. and Streptococcus sp. Bioresource Technology 169:271–76. doi:10.1016/j.biortech.2014.07.002.
  • Smith, K. E., M. Thullner, L. Y. Wick, and H. Harms. 2009. Sorption to humic acids enhances polycyclic aromatic hydrocarbon biodegradation. Environmental Science & Technology 43 (19):7205–11. doi:10.1021/es803661s.
  • Sun, J., Y. Li, Y. Hu, B. Hou, Y. Zhang, and S. Li. 2013. Understanding the degradation of Congo red and bacterial diversity in an air–Cathode microbial fuel cell being evaluated for simultaneous azo dye removal from wastewater and bioelectricity generation. Applied Microbiology and Biotechnology 97 (8):3711–19. doi:10.1007/s00253-012-4180-3.
  • Van der Zee, F. P., and F. J. Cervantes. 2009. Impact and application of electron shuttles on the redox (bio) transformation of contaminants: A review. Biotechnology Advances 27 (3):256–77. doi:10.1016/j.biotechadv.2009.01.004.
  • Wang, L., S. Xu, B. Pan, and Y. Yang. 2017. Emerging investigator series: Dual role of organic matter in the anaerobic degradation of triclosan. Environmental Science: Processes & Impacts 19:499–506. doi:10.1039/c7em00003k.
  • Zhang, C., and A. Katayama. 2012. Humin as an electron mediator for microbial reductive dehalogenation. Environmental Science & Technology 46 (12):6575–83. doi:10.1021/es3002025.
  • Zhang, D. D., C. F. Zhang, Z. L. Li, D. Suzuki, D. D. Komatsu, U. Tsunogai and A. Katayama. 2014. Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization. Bioresource Technology 164 (2):232–40. doi:10.1016/j.biortech.2014.04.071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.