271
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effects of dilution ratio on nutrient removal, sedimentation efficiency, and lipid production by Scenedesmus obliquus in diluted cattle wastewater

, , , , &
Pages 121-130 | Received 31 Jul 2018, Accepted 26 Dec 2018, Published online: 01 Mar 2019

References

  • Cabanelas, I. T., J. Ruiz, Z. Arbib, F. A. Chinalia, C. Garrido-Pérez, F. Rogalla, I. A. Nascimento, and J. A. Perales. 2013. Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresource Technology 131:429–36. doi:10.1016/j.biortech.2012.12.152.
  • Chen, G. Y., L. Zhao, and Y. Qi. 2015. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Applied Energy 137:282–91. doi:10.1016/j.apenergy.2014.10.032.
  • Cheng, P., Y. Wang, T. Liu, and D. Liu. 2017. Biofilm attached cultivation of Chlorella pyrenoidosa is a developed system for swine wastewater treatment and lipid production. Frontiers in Plant Science 8:1594. doi:10.3389/fpls.2017.01594.
  • Cheng, P. F., Y. Wang, D. Osei-Wusu, Y. Z. Wang, and T. Z. Liu. 2018. Development of nitrogen supply strategy for Scenedesmus rubescens, attached cultivation toward growth and lipid accumulation. Bioprocess & Biosystems Engineering 41 (3):435–42. doi:10.1007/s00449-017-1877-9.
  • Devi, M. P., G. V. Subhash, and S. V. Mohan. 2012. Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: Effect of nutrient supplementation. Renewable Energy 43:276–83. doi:10.1016/j.renene.2011.11.021.
  • Federation, W. E. 2005. Standard methods for the examination of water and wastewater. Washington, DC, USA: American Public Health Association (APHA.
  • Francisco, E. C., D. B. Neves, E. Jacob‐Lopes, and T. T. Franco. 2010. Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality. Journal of Chemical Technology and Biotechnology 85 (3):395–403. doi:10.1002/jctb.2338.
  • Fu, L., X. C. Cui, Y. B. Li, L. Xu, C. F. Zhang, R. H. Xiong, D. D. Zhou, and J. C. Crittenden. 2017. Excessive phosphorus enhances Chlorella regularis, lipid production under nitrogen starvation stress during glucose heterotrophic cultivation. Chemical Engineering Journal 330:566–72. doi:10.1016/j.cej.2017.07.182.
  • Ge, S., J. S. Qiu, D. Tremblay, K. Viner, P. Champagne, and P. G. Jessop. 2018. Centrate wastewater treatment with Chlorella vulgaris: Simultaneous enhancement of nutrient removal, biomass and lipid production. Chemical Engineering Journal 342:310-320.
  • Ge, S., M. Agbakpe, W. Zhang, and L. Kuang. 2015. Heteroaggregation between PEI-coated magnetic nanoparticles and algae: Effect of particle size on algal harvesting efficiency. ACS Applied Materials & Interfaces 7 (11):6102. doi:10.1021/acsami.5b00572.
  • Gupta, S. K., F. A. Ansari, A. Shriwastav, N. K. Sahoo, I. Rawat, and F. Bux. 2016. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. Journal of Cleaner Production 115:255–64. doi:10.1016/j.jclepro.2015.12.040.
  • Hena, S., S. Fatimah, and S. Tabassum. 2015. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resources & Industry 10 (C):1–14. doi:10.1016/j.wri.2015.02.002.
  • Ji, M. K., H. C. Kim, V. R. Sapireddy, H. S. Yun, R. A. Abou-Shanab, J. Choi, W. Lee, T. C. Timmes, and B. H. Jeon. 2013. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Applied Microbiology and Biotechnology 97 (6):2701–10. doi:10.1007/s00253-012-4097-x.
  • Jiang, L., L. Zhang, C. Nie, and H. Pei. 2018. Lipid productivity in limnetic Chlorella, is doubled by seawater added with anaerobically digested effluent from kitchen waste. Biotechnology for Biofuels 11 (1):68. doi:10.1186/s13068-018-1064-5.
  • Kim, T. H., Y. Lee, S. H. Han, and S. J. Hwang. 2013. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology 130:75–80. doi:10.1016/j.biortech.2012.11.134.
  • Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology 86 (10):1059–70. doi:10.1016/j.fuproc.2004.11.002.
  • Lepage, G., and C. C. Roy. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. Journal Lipid Research 25 (12):1391–96.
  • Li, M., L. Gao, and L. Lin. 2015. Specific growth rate, colonial morphology and extracellular polysaccharides (EPS) content of Scenedesmus obliquus grown under different levels of light limitation. In Annales De Limnologie-International Journal of Limnology 51 (4):329–34. doi:10.1051/limn/2015033.
  • Li, Y., Y. F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, and R. Ruan. 2011. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology 102 (8):5138–44. doi:10.1016/j.biortech.2011.01.091.
  • Lürling, M., and E. Van Donk. 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnology and Oceanography 42 (4):783–88. doi:10.4319/lo.1997.42.4.0783.
  • Maity, J. P., J. Bundschuh, C. Y. Chen, and P. Bhattacharya. 2014. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review. Energy 78:104–13. doi:10.1016/j.energy.2014.04.003.
  • Martınez, M. E., S. Sánchez, J. M. Jimenez, F. E. Yousfi, and L. Muñoz. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology 73 (3):263–72. doi:10.1016/S0960-8524(99)00121-2.
  • McCrackin, M. L., H. P. Jones, P. C. Jones, and D. Moreno-Mateos. 2017. Recovery of lakes and coastal marine ecosystems from eutrophication: A global meta-analysis. Limnology and Oceanography 62 (2):507–18. doi:10.1002/lno.10441.
  • Menetrez, M. Y. 2012. An overview of algae biofuel production and potential environmental impact. Environmental Science & Technology 46 (13):7073–85. doi:10.1021/es300917r.
  • O’donnell, D. R., S. B. Fey, and K. L. Cottingham. 2012. Nutrient availability influences kairomone-induced defenses in Scenedesmus acutus (Chlorophyceae). Journal of Plankton Research 35 (1):191–200. doi:10.1093/plankt/fbs083.
  • Pacheco, M. M., M. Hoeltz, M. S. Moraes, and R. C. Schneider. 2015. Microalgae: Cultivation techniques and wastewater phycoremediation. Environmental Letters 50 (6):585–601.
  • Park, J., H. F. Jin, B. R. Lim, K. Y. Park, and K. Lee. 2010. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource Technology 101 (22):8649–57. doi:10.1016/j.biortech.2010.06.142.
  • Peng, Q., M. Zhao, G. Shen, X. Gan, and M. Li. 2017. Linear alkylbenzene sulfonate (LAS) promotes sedimentation and lipid accumulation in Scenedesmus obliquus. RSC Advances 7 (15):9244–50. doi:10.1039/C6RA27664D.
  • Pires, J. C., M. C. Alvimferraz, F. G. Martins, and M. Simões. 2013. Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research 20 (8):5096–105. doi:10.1007/s11356-013-1791-x.
  • Prasad, M. S. V., A. K. Varma, P. Kumari, and P. Mondal. 2018. Production of lipid containing microalgal biomass and simultaneous removal of nitrate and phosphate from synthetic wastewater. Environmental Technology 39 (5):669-681.
  • Razzak, S. A., M. M. Hossain, R. A. Lucky, A. S. Bassi, and H. D. Lasa. 2013. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing – A review. Renewable and Sustainable Energy Reviews 27:622–53. doi:10.1016/j.rser.2013.05.063.
  • Richardson, J. W., M. D. Johnson, X. Zhang, P. Zemke, W. Chen, and Q. Hu. 2014. A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Research 4:96–104. doi:10.1016/j.algal.2013.12.003.
  • Sakar, S., K. Yetilmezsoy, and E. Kocak. 2009. Anaerobic digestion technology in poultry and livestock waste treatment – A literature review. Waste Management & Research 27 (1):3–18. doi:10.1177/0734242X07079060.
  • Samorì, G., C. Samorì, F. Guerrini, and R. Pistocchi. 2013. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water Research 47 (2):791–801. doi:10.1016/j.watres.2012.11.006.
  • Sun, Z., X. P. Fang, X. Y. Li, and Z. G. Zhou. 2017. Oleaginous microalgae from dairy farm wastewater for biodiesel production: Isolation, characterization and mass cultivation. Applied Biochemistry & Biotechnology 184 (74–76):1–14.
  • Travieso, L., F. Benítez, E. Sánchez, R. Borja, A. Martín, and M. F. Colmenarejo. 2006. Batch mixed culture of Chlorella vulgaris using settled and diluted piggery waste. Ecological Engineering 28 (2):158–65. doi:10.1016/j.ecoleng.2006.06.001.
  • Wang, H., H. Xiong, Z. Hui, and X. Zeng. 2012. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresource Technology 104 (1):215–20. doi:10.1016/j.biortech.2011.11.020.
  • Wang, L., Y. Li, P. Chen, M. Min, Y. Chen, J. Zhu, and R. R. Ruan. 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology 101 (8):2623–28. doi:10.1016/j.biortech.2009.10.062.
  • Wang, Y., W. Q. Guo, H. W. Yen, S. H. Ho, Y. C. Lo, C. L. Cheng, N. Q. Ren, and J. S. Chang. 2015. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology 198:619–25. doi:10.1016/j.biortech.2015.09.067.
  • Wiltshire, K. H., and W. Lampert. 1999. Urea excretion by Daphnia: A colony inducing factor in Scenedesmus? Limnology and Oceanography 44:1894–903. doi:10.4319/lo.1999.44.8.1894.
  • Wu, Y. H., H. Y. Hu, Y. Yu, T. Y. Zhang, S. F. Zhu, L. L. Zhuang, X. Zhang, and Y. Lu. 2014. Microalgal species for sustainable biomass/lipid production using wastewater as resource: A review. Renewable and Sustainable Energy Reviews 33:675–88. doi:10.1016/j.rser.2014.02.026.
  • Xin, L., H. Y. Hu, K. Gan, and J. Yang. 2010. Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecological Engineering 36 (4):379–81. doi:10.1016/j.ecoleng.2009.11.003.
  • Zhu, X., H. Nan, Q. Chen, Z. Wu, and X. Wu. 2015. Potential grazing intensity directly determines the extent of grazer-induced colony formation in Scenedesmus obliquus. Biochemical Systematics & Ecology 61:271–77. doi:10.1016/j.bse.2015.06.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.