295
Views
11
CrossRef citations to date
0
Altmetric
Articles

Prospective evaluation of hydrocarbon generation potential of Umarsar lignite, India

, , , & ORCID Icon
Pages 664-675 | Received 28 Sep 2018, Accepted 07 Jan 2019, Published online: 22 Mar 2019

References

  • Akanksha, S. A. K., D. Mohantya, and H. M. Jena. 2017. Characterization of lignite for underground coal gasification in India. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (16):1762–70. doi:10.1080/15567036.2017.1352630.
  • Bhutto, A. W., A. A. Bazmi, and G. Zahedi. 2013. Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science 39 (1):189–214. doi:10.1016/j.pecs.2012.09.004.
  • Bordenave, M. L., L. Espitalié, P. Leplat, J. L. Oudin, and M. Vandenbroucke. 1993. Screening techniques for source rock evaluation. In Applied petroleum geochemistry, ed. M. L. Bordenave, 217–78. Paris: Editions Technip.
  • Chaurasia, R. C., D. Sahu, and S. Nikkam. 2018. Cleaning of coal by multi gravity separator. T Indian I Metals 71 (6):1487–95. doi:10.1007/s12666-018-1284-1.
  • Chaurasia, R. C., and S. Nikkam. 2016. A suitable process for clean coal recovery from tailing pond deposits. Energ Source Part A 38 (23):3435–39. doi:10.1080/15567036.2016.1156197.
  • Chen, Y. C., Z. M. Shen, and X. P. Luo. 2007. Oil and gas organic geochemistry, 275. Beijing: Science Press. (in Chinese).
  • Davis, A., W. Spackman, and P. H. Given. 1976. The influence of the properties of coals on their conversion into clean fuels. Energy Sources 3 (1):55–81. doi:10.1080/00908317608945968.
  • Erik, N. Y. 2011. Hydrocarbon generation potential and miocene–pliocene paleoenvironments of the Kangal Basin (Central Anatolia, Turkey). Journal of Asian Earth Sciences 42 (6):1146–62. doi:10.1016/j.jseaes.2011.06.013.
  • Farhaduzzaman, M., W. H. Abdullah, and M. A. Islam. 2012. Depositional environment and hydrocarbon source potential of the Permian Gondwana coals from the Barapukuria Basin, Northwest Bangladesh. International Journal of Coal Geology 90:162–79. doi:10.1016/j.coal.2011.12.006.
  • Guyot, R. E. 1978. Influence of coal characteristics on the yields and properties of hydrogenation products. Australian Coal Industry Research Laboratories.
  • Hakimi, M. H., and W. H. Abdullah. 2013. Liquid hydrocarbon generation potential from tertiary nyalau formation coals in the onshore Sarawak, Eastern Malaysia. International Journal of Earth Sciences 102 (1):333–48. doi:10.1007/s00531-012-0798-8.
  • Hunt, J. M. 1995. Petroleum geochemistry and geology, 743. New York: W.H. Freeman and Company.
  • Jin, J., and S. Shi. 1997. The development and prospective application of coal direct liquefaction for Chinese coals. In Proc. Internat. Symp. on clean coal technology, Xiamen, 379. China Coal Industry Publishing House.
  • Li, W. Y., L. Zhong, J. Feng, and K. C. Xie. 2010. Release behavior of As, Hg, Pb, and Cd during coal gasification. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32 (9):818–25. doi:10.1080/15567030802606178.
  • Liu, B., C. Zhao, J. Ma, Y. Sun, and W. Püttmann. 2018. The origin of pale and dark layers in Pliocene lignite deposits from Yunnan Province, Southwest China, based on coal petrological and organic geochemical analyses. International Journal of Coal Geology 195:172–88. doi:10.1016/j.coal.2018.06.003.
  • Mani, M. S. 1986. Newer mining technology and plans for increased use for lignite in India. Energy 11:1259–65. doi:10.1016/0360-5442(86)90063-0.
  • Mao, F. 2016. Underground coal gasification (UCG): A new trend of supply-side economics of fossil fuels. Natural Gas Industry B 3 (4):312–22. doi:10.1016/j.ngib.2016.12.007.
  • Mathews, R. P., B. D. Singh, H. Singh, V. P. Singh, and A. Singh. 2018. Characterization of panandhro lignite deposits (Kachchh Basin), western India: Results from the bulk geochemical and palynofloral compositions. Journal of the Geological Society of India 91 (3):281–89. doi:10.1007/s12594-018-0851-8.
  • Mukhopadhyay, P. K., P. G. Hatcher, and J. H. Calder. 1991. Hydrocarbon generation from deltaic and intermontane fluviodeltaic coal and coaly shale from the tertiary of Texas and Carboniferous of Nova Scotia. Organic Geochemistry 17 (6):765–83. doi:10.1016/0146-6380(91)90020-K.
  • Obaje, N. G., and H. Hamza. 2000. Liquid hydrocarbon source-rock potential of mid-cretaceous coals and coal measures in the middle Benue Trough of Nigeria. International Journal of Earth Sciences 89 (1):130–39. doi:10.1007/s005310050321.
  • Panwar, D. S., S. Suman, V. K. Saxena, R. C. Chaurasia, and A. K. Singh. 2019. Assessment of hydrocarbon generation potential of bituminous coal from Raniganj Coalfield, India. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1588427.
  • Panwar, D. S., V. K. Saxena, A. Rani, A. K. Singh, and V. Kumar. 2017c. Source rock evaluation of the Gondwana coals in Raniganj coalfield, India. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (13):1395–402. doi:10.1080/15567036.2017.1334105.
  • Panwar, D. S., V. K. Saxena, A. K. Singh, and A. M. Yadav. 2016b. Natural gas recovery: A case study of field scale development in Raniganj Coal. International Journal of Engineering Research and Science & Technology 5:51.
  • Panwar, D. S., V. K. Saxena, A. K. Singh, and Y. A. M. Prashant. 2016a. Seam quality and gas resource estimation in kulti block of Raniganj coal field West Bengal India. International Journal of Engineering Research and Science & Technology 5:1–9.
  • Panwar, D. S., V. K. Saxena, R. C. Chaurasia, and A. K. Singh. 2017a. Prospective evaluation of coal bed methane in Raniganj coal field, India. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (9):946–54. doi:10.1080/15567036.2017.1279242.
  • Panwar, D. S., V. K. Saxena, S. Suman, V. Kumar, and A. K. Singh. 2017b. Physicochemical study of coal for CBM extraction in Raniganj coal field, India. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (11):1182–89. doi:10.1080/15567036.2017.1314394.
  • Peters, K. E., and M. R. Cassa. 1994. Applied source rock geochemistry: Chapter 5: Part II. Essential elements.
  • Petersen, H. I., and M. Hertle. 2018. A review of the coaly source rocks and generated petroleums in the Danish North Sea: AN underexplored middle jurassic petroleum system? Journal of Petroleum Geology 41 (2):135–54. doi:10.1111/jpg.12697.
  • Sahu, D., R. C. Chaurasia, and S. Nikkam. 2018. Mineralogical characterization and Washability of indian coal from Jamadoba. Energy Source Part A. doi: 10.1080/15567036.2018.1520336.
  • Singh, A. K., and A. Kumar. 2018. Petrographic and geochemical study of Gurha Lignites, Bikaner Basin, Rajasthan, India: Implications for thermal maturity, hydrocarbon generation potential and paleodepositional environment. Journal of the Geological Society of India 92 (1):27–35. doi:10.1007/s12594-018-0949-z.
  • Singh, M. P., and P. K. Singh. 1994a. Indications of hydrocarbon generation in the coal deposits of the rajmahal basin. Bihar: Revelation of Fluorescence Microscopy. J. Geol. Soc. India 43 (6):647-658.
  • Singh, M. P., and P. K. Singh. 1994b. Comment and reply on the paper “Indications of hydrocarbon generation in the coal deposits of the Rajmahal basin, Bihar: Revelation of fluorescence microscopy". J.geol. Soc. India 44:588-590.
  • Singh, P. K. 2012. Petrological and geochemical considerations to predict oil potential of Rajpardi and Vastan lignite deposits of Gujarat, Western India. Journal of the Geological Society of India 80 (6):759–70. doi:10.1007/s12594-012-0206-9.
  • Singh, P. K., M. P. Singh, and A. K. Singh. 2010. Petro-chemical characterization and evolution of Vastan Lignite, Gujarat, India. International Journal of Coal Geology 82 (1–2):1–16. doi:10.1016/j.coal.2010.01.003.
  • Singh, P. K., M. P. Singh, A. K. Singh, A. S. Naik, V. K. Singh, V. K. Singh, and P. K. Rajak. 2012. Petrological and geochemical investigations of Rajpardi lignite deposit, Gujarat, India. Energy Exploration & Exploitation 30 (1):131–51. doi:10.1260/0144-5987.30.1.131.
  • Singh, P. K., M. P. Singh, A. K. Singh, M. Arora, and A. S. Naik. 2013. The prediction of the liquefaction behavior of the East Kalimantan Coals of Indonesia: An appraisal through petrography of selected coal samples. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35 (18):1728–40. doi:10.1080/15567036.2010.529731.
  • Singh, P. K., P. K. Rajak, V. K. Singh, M. P. Singh, A. S. Naik, and S.V. Raju 2016a. Studies on thermal maturity and hydrocarbon potential of lignites of Bikaner-Nagaur basin, Rajasthan. Energy, Exploration and Exploitation 34 (1):140-157. UK: SAGE Pub. Co. Ltd.
  • Singh, P. K., V. K. Singh, M. P. Singh, and P. K. Rajak. 2017c. Understanding the paleomires of Eocene lignites of Kachchh Basin, Gujarat (Western India): Petrological implications. International Journal of Coal Science & Technology 4 (2):80–101. doi:10.1007/s40789-017-0165-2.
  • Singh, P. K., V. K. Singh, P. K. Rajak, M. P. Singh, A. S. Naik, S. V. Raju, and D. Mohanty. 2016b. Eocene lignites from Cambay basin, Western India: An excellent source of hydrocarbon. Geoscience Frontiers 7 (5):811-819. doi: 10.1016/j.gsf.2015.08.001.
  • Singh, P. K., V. K. Singh, P. K. Rajak, and N. Mathur. 2017a. A study on assessment of hydrocarbon potential of the lignite deposits of saurashtra basin, gujarat (western india). Gujarat (Western India). International Journal Of Coal Science & Technology 4 (4):310–321. doi:10.1007/s40789-017-0186-x.
  • Singh, P. K., V. K. Singh, P. K. Rajak, and N. Mathur. 2017b. A study on assessment of hydrocarbon potential of the lignite deposits of Saurashtra basin, Gujarat (Western India). International Journal of Coal Science & Technology.
  • Song, H., G. Lui, and J. Wu. 2016. Pyrolysis characteristics and kinetics of low rank coals by distributed activation energy model. Energy Conversion and Management 126:1037–46. doi:10.1016/j.enconman.2016.08.082.
  • Stach, E., M. T. Mackowsky, M. Teichmuller, G. H. Taylor, D. Chandar, and R. Teichmuller. 1982. Stach’s textbook of coal petrology, 535. 3rd ed. Berlin: Gebruder Borntraeger.
  • Suman, S., D. S. Panwar, and S. Gautam. 2017. Surface morphology properties of biochars obtained from different biomass waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (10):1007–12. doi:10.1080/15567036.2017.1283553.
  • Tissot, B. P., and D. H. Welte. 1984. Petroleum formation and occurrence, 699. 2nd ed. Berlin: Springer-Verlag.
  • Van Koeverden, J. H., D. A. Karlsen, and K. Backer‐Owe. 2011. Carboniferous non‐marine source rocks from Spitsbergen and Bjørnøya: Comparison with the Western Arctic. Journal of Petroleum Geology 34 (1):53–66. doi:10.1111/j.1747-5457.2011.00493.x.
  • Van Krevelen, D. W. 1993. Coal, typology-physics-chemistry-constitution. 3rd ed. Amsterdam: Elsevier Science.
  • Wang, Y. L., S. H. Zhu, M. Q. Gao, Z. R. Yang, L. J. Yan, Y. H. Bai, and F. Li. 2015. A study of char gasification in H2O and CO2 mixtures: Role of inherent minerals in the coal. Fuel Processing Technology. doi:10.1016/j.fuproc.2015.06.001.
  • Ward, C. R., and I. Suárez-Ruiz. 2008. Introduction to applied coal petrology. In Applied coal petrology, 1–18.
  • Yadav, A. M., D. S. Panwar, and S. Suman. 2017. The thermal conversion of coal impregnated with ZnCl2. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (2):172–76. doi:10.1080/15567036.2016.1205684.
  • Yip, K., H. Wu, and D. K. Zhang. 2007. Effect of inherent moisture in collie coal during pyrolysis due to in-situ steam gasification. Energy & Fuels 21 (5):2883–91. doi:10.1021/ef7002443.
  • Yu, J., A. Tahmasebi, Y. Han, F. Yin, and X. Li. 2013. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization. Fuel Processing Technology 106:9–20. doi:10.1016/j.fuproc.2012.09.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.