270
Views
8
CrossRef citations to date
0
Altmetric
Articles

Preparation of carbonaceous solid acid catalyst from Acacia mangium wood sawdust for conversion of same source into 5-hydroxymethylfurfural

, , , , , & show all
Pages 730-739 | Received 03 Aug 2018, Accepted 21 Jan 2019, Published online: 16 Apr 2019

References

  • Akhtar, N., K. Gupta, D. Goyal, and A. Goyal. 2015. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Invironmental Progress and Sustainable Energy 35 (2):489–511. doi:10.1002/ep.12257.
  • Dee, S. J., and A. T. Bell. 2011. A study of the acid‐catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing the dehydration of glucose and the formation of humins. ChemSusChem 4 (8):1166–73. doi:10.1002/cssc.201000426.
  • Dien, L. Q., N. T. Thanh, N. T. Long, N. T. Nhi, N. M. Chau, and N. H. Chung. 2018. Preparation of bio-char from Acacia Sawdust and sugarcane bagasse for solid acid catalyst fabrication. Vietnam Journal of Catalysis and Adsorption 7 (2):98–104.
  • Ek, M., G. Gellerstedt, and G. Henriksson. 2009. Pulp and paper chemistry and technology Vol. 1–2. Berlin: Walter de Gruyter GmbH&Co.
  • Girisuta, B., L. P. B. M. Janssen, and H. J. Heeres. 2006. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chemistry 8:701–09. doi:10.1039/b518176c.
  • Hu, L., X. Tang, Z. Wu, L. Lin, J. Xu, N. Xu, and B. Dai. 2015. Magnetic lignin derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxyfurfural in dimethylsulfoxide. Chemical Engineering Journal 263:299–308. doi:10.1016/j.cej.2014.11.044.
  • Isikgora, F. H., and C. Remzi Becer. 2015. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry 6:4497–559.
  • Kang, S., J. Ye, and J. Chang. 2013. Recent advances in carbon-based sulfonated catalyst preparation and application. International Rewiew of Chemical Engineering 5 (2):133–44.
  • Kang, S., J. Ye, Y. Zhang, and J. Chang. 2013. Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production. RSC Advances 3:7360–74. doi:10.1039/c3ra23314f.
  • Karinen, R., K. Vilonen, and M. Niemelä. 2011. Biorefining: Heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4 (8):1002–16. doi:10.1002/cssc.201000375.
  • Kobayashi, H., and A. Fukuok. 2013. Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chemistry 15:1740–63. doi:10.1039/c3gc00060e.
  • Kougioumtzis, M. A., A. Marianou, K. Atsonios, C. Michailof, N. Nikolopoulos, N. Koukouzas, K. Triantafyllidis, A. Lappas, and E. Kakaras. 2018. Production of 5-HMF from cellulosic biomass: Experimental results and integrated process simulation. Waste and Biomass Valorization 9 (12):2433–45. doi:10.1007/s12649-018-0267-0.
  • Lam, E., and J. H. T. Luong. 2014. Carbon materials as catalyst supports and catalysts in the tranfomation of biomass to fuels and chemicals. ACS Catalyst 4:3393–410. doi:10.1021/cs5008393.
  • Li, H., Y. Wang, Y. Zhu, X. Xu, A. Wu, and X. Deng. 2018. Bamboo-derived magnetic carbonaceous solid acid catalyst for conversion of corncob into furfural promoted by warm water immersion. BioResources 13 (3):6221–37.
  • Menegazzo, F., E. Ghedini, and M. Signoretto. 2018. 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules 23:2201–18. doi:10.3390/molecules23092201.
  • Mukherjee, A., M.-J. Dumont, and V. Raghavan. 2015. Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy 72:143–83. doi:10.1016/j.biombioe.2014.11.007.
  • Ok, Y. S., S. M. Uchimiya, S. X. Chang, and N. Bolan. 2016. Biochar: Production, characterization, and applications. CRC Press. doi:1201/b18920.
  • Qiana, K., A. Kumara, H. Zhangb, D. Bellmera, and R. Huhnkea. 2015. Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews 42:1055–64. doi:10.1016/j.rser.2014.10.074.
  • Sheldon, R. A. 2014. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chemistry 16:950–63. doi:10.1039/C3GC41935E.
  • Song, J., H. Fan, J. Ma, and B. Han. 2013. Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chemisstry 15:619–2635.
  • Suib, S. L. 2013. New and future developments in catalysis: Catalytic biomass conversion, 59–60. Elsevier B.V. doi:10/1016/C2010-0-68566-X.
  • Teong, S. P., G. Yi, and Y. Zhang. 2014. Hydroxymethylfurfural production from bioresources: Past, present and future. Green Chemistry 16:2015–26. doi:10.1039/c3gc42018c.
  • Xue, Z., M.-G. Ma, Z. Li, and T. Mu. 2016. Advances in the conversion of glucose and cellulose to 5-hydroxymethylfurfural over heterogeneous catalysts. RCS Advances 6:98874–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.