193
Views
11
CrossRef citations to date
0
Altmetric
Articles

Optimization of exhaust emissions from marine engine fueled with LNG/diesel using response surface methodology

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1436-1448 | Received 04 Oct 2018, Accepted 24 Mar 2019, Published online: 15 Apr 2019

References

  • Anderson, M., K. Salo, and E. Fridell. 2015. Particle and gaseous emissions from a LNG powered ship.[J]. Environmental Science & Technology 49 (20):12568. doi:10.1021/acs.est.5b02678.
  • Bharadwaz, Y. D., B. G. Rao, V. D. Rao, et al. 2016. Improvement of biodiesel methanol blends performance in a variable compression ratio engine using response surface methodology[J]. Alexandria Engineering Journal. 55(2):1201–09. doi:10.1016/j.aej.2016.04.006.
  • Chong, Z. R., S. H. B. Yang, P. Babu, et al. 2016. Review of natural gas hydrates as an energy resource: Prospects and challenges.[J]. Applied Energy 162:1633–52.
  • Faris, W. F., H. A. Rakha, and S. Elmoselhy. 2016. Validated analytical modeling of diesel engine regulated exhaust CO emission rate[J]. Advances in Mechanical Engineering 8:6.
  • Hoseiny, S., Z. Zare, A. Mirvakili, P. Setoodeh, and M. R. Rahimpour. 2016. Simulation–Based optimization of operating parameters for methanol synthesis process: Application of response surface methodology for statistical analysis[J]. Journal of Natural Gas Science & Engineering 34 (3):439–48. doi:10.1016/j.jngse.2016.06.075.
  • Khoobbakht, G., G. Najafi, and M. Karimi. 2016. Optimization of operating factors and blended levels of diesel, biodiesel and ethanol fuels to minimize exhaust emissions of diesel engine using response surface methodology[J]. Applied Thermal Engineering 99:1006–17. doi:10.1016/j.applthermaleng.2015.12.143.
  • Kumar, B. R., S. Saravanan, D. Rana, et al. 2016. Combined effect of injection timing and exhaust gas recirculation (EGR) on performance and emissions of a DI diesel engine fuelled with next-generation advanced biofuel – Diesel blends using response surface methodology[J]. Energy Conversion & Management 123:470–86. doi:10.1016/j.enconman.2016.06.064.
  • Marek, V., L. Tunka, A. Polcar, et al. 2016. Reduction of NOX emission of a diesel engine with a multiple injection pump by SCR Catalytic Converter[J]. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis. 64(4):1205–10. doi:10.11118/actaun201664041205.
  • Najafi, G., B. Ghobadian, T. Yusaf, et al. 2015. Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–Ethanol blended fuels using response surface methodology[J]. Energy 90:1815–29.
  • Poompipatpong, C., and A. Kengpol. 2015. Design of a decision support methodology using response surface fortorque comparison: An empirical study on an engine fueled withwaste plastic pyrolysis oil[J]. Energy 82:850–56. doi:10.1016/j.energy.2015.01.095.
  • Tan, Y. H., M. O. Abdullah, C. Nolasco-Hipolito, et al. 2017. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions[J]. Energy Conversion & Management 132:54–64. doi:10.1016/j.enconman.2016.11.013.
  • Wei, F., D. B. Kittelson, and W. F. Northrop. 2015. Optimization of reactivity-controlled compression ignition combustion fueled with diesel and hydrous ethanol using response surface methodology[J]. Fuel 160:446–57. doi:10.1016/j.fuel.2015.07.055.
  • Yadav, A. K., Vinay and Singh, B. 2018. Optimization of biodiesel production from Annona squamosa seed oil using response surface methodology and its characterization[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects 40 (9):1051–59.
  • Yang, P., Y. W. Liu, and G. Y. Zhong. 2016. Prediction and parametric analysis of acoustic streaming in a thermoacoustic Stirling heat engine with a jet pump using response surface methodology[J]. Applied Thermal Engineering 103:1004–13. doi:10.1016/j.applthermaleng.2016.04.157.
  • Yu, L., H. Li, H. Guo, et al. 2017. A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model[J]. Applied Energy 205:153–62. doi:10.1016/j.apenergy.2017.07.071.
  • Yusri, I. M., R. Mamat, W. H. Azmi, et al. 2017. Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine[J]. Energy Conversion & Management 133:178–95. doi:10.1016/j.enconman.2016.12.001.
  • Zheng, C., B. Xu, Z. Fan, et al. 2017. Quantitative research on thermodynamic process and efficiency of a LNG heavy-duty engine with high compression ratio and hydrogen enrichment[J]. Applied thermal engineering, 125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.