214
Views
6
CrossRef citations to date
0
Altmetric
Articles

Effect of energy consumption on dispersion and recovery of coal slimes in a mechanical flotation cell

, , , , , & show all
Pages 1882-1890 | Received 28 Dec 2018, Accepted 18 Feb 2019, Published online: 15 Apr 2019

References

  • Chen, S. J., X. X. Tao, S. W. Wang, L. F. Tang, Q. Z. Liu, and L. Li. 2019. Comparison of air and oily bubbles flotation kinetics of long-flame coal. Fuel 236:636–42. doi:10.1016/j.fuel.2018.08.131.
  • Cheng, G., J. T. Liu, L. Q. Ma, Y. J. Cao, J. H. Li, and G. Huang. 2014. Study on energy consumption in fine coal flotation. International Journal of Coal Preparation and Utilization 34:38–48. doi:10.1080/19392699.2013.843530.
  • Cheng, G., and H. X. Xu. 2017. Study on separation dynamics of fine coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:480–84. doi:10.1080/15567036.2016.1230800.
  • Cheng, G., C. X. Zhang, Y. J. Cao, and Z. D. Jiang. 2018. Review of energy-consumption measuring techniques for the flotation process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40:2367–77. doi:10.1080/15567036.2018.1495777.
  • Evans, G. M., E. Doroodchi, G. L. Lane, P. T. L. Koh, and M. P. Schwarz. 2008. Mixing and gas dispersion in mineral flotation cells. Chemical Engineering Research & Design 86:1350–62. doi:10.1016/j.cherd.2008.07.006.
  • Gamal, R., N. A. A. Edress, A. A. El-Midany, and S. E. El-Mofty. 2018. Valuation of chloride salts and their mixtures in coal flotation without collector. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40:2822–31. doi:10.1080/15567036.2018.1511655.
  • Ghatage, S. V., M. J. Sathe, E. Doroodchi, J. B. Joshi, and G. M. Evans. 2013. Effect of turbulence on particle and bubble slip velocity. Chemical Engineering Science 100:120–36. doi:10.1016/j.ces.2013.03.031.
  • Gui, X. H., Y. J. Cao, Y. W. Xing, Z. L. Yang, D. Wang, and C. W. Li. 2017. A two-stage process for fine coal flotation intensification. Powder Technology 313:361–68. doi:10.1016/j.powtec.2017.03.029.
  • Gui, X. H., G. Cheng, J. T. Liu, Y. J. Cao, S. L. Li, and Q. Q. He. 2015. Effects of energy consumption on the separation performance of fine coal flotation. Fuel Processing Technology 115:192–200. doi:10.1016/j.fuproc.2013.05.017.
  • Gui, X. H., J. T. Liu, Y. J. Cao, G. Cheng, S. L. Li, and L. Wu. 2014. Flotation process design based on energy input and distribution. Fuel Processing Technology 120:61–70. doi:10.1016/j.fuproc.2013.12.011.
  • Hogue, M. M., M. J. Sathe, S. Mitra, J. B. Joshi, and G. M. Evans. 2015. Comparison of specific energy dissipation rate calculation methodologies utilising 2D PIV velocity measurement. Chemical Engineering Science 137:752–67. doi:10.1016/j.ces.2015.06.056.
  • Hoseinian, F. S., M. Irannajad, and M. Safari. 2017. Effective factors and kinetics study of zinc ion removal from synthetic wastewater by ion flotation. Separation Science and Technology 52:892–902. doi:10.1080/01496395.2016.1267216.
  • Koh, P. T. L., and M. P. Schwarz. 2006. CFD modelling of bubble–Particle attachments in flotation cells. Minerals Engineering 19:619–26. doi:10.1016/j.mineng.2005.09.013.
  • Liu, T. Y., and M. P. Schwarz. 2009. CFD-based multiscale modelling of bubble–Particle collision efficiency in a turbulent flotation cell. Chemical Engineering Science 64:5287–301. doi:10.1016/j.ces.2009.09.014.
  • Mohanty, M. K., and R. Q. Honaker. 1999. A comparative evaluation of the leading advanced flotation technologies. Minerals Engineering 12:1–13. doi:10.1016/S0892-6875(98)00116-2.
  • Ngo-Cong, D., A. V. Nguyen, and T. Tran-Cong. 2018. Isotropic turbulence surpasses gravity in affecting bubble-particle collision interaction in flotation. Minerals Engineering 122:165–75. doi:10.1016/j.mineng.2018.03.033.
  • Nguyen, A. V., D. A. An-Vo, T. Tran-Cong, and G. M. Evans. 2016. A review of stochastic description of the turbulence effect on bubble-particle interactions in flotation. International Journal of Mineral Processing 156:75–86. doi:10.1016/j.minpro.2016.05.002.
  • Pan, S. W., and E. Johnsen. 2017. The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence. Journal of Fluid Mechanics 833:717–44. doi:10.1017/jfm.2017.598.
  • Puhales, F. S., G. Demarco, L. G. N. Martins, O. C. Acevedo, G. A. Degrazia, G. S. Welter, F. D. Costa, G. F. Fisch, and A. C. Avelar. 2015. Estimates of turbulent kinetic energy dissipation rate for a stratified flow in a wind tunnel. Physica A: Statistical Mechanics and Its Applications 431:175–87. doi:10.1016/j.physa.2015.03.008.
  • Rosa, A. F., and J. Rubio. 2018. On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals. Minerals Engineering 18:839–44. doi:10.1016/j.mineng.2018.08.020.
  • Safari, M., and D. Deglon. 2018. An attachment-detachment kinetic model for the effect of energy input on flotation. Minerals Engineering 117:8–13. doi:10.1016/j.mineng.2017.12.006.
  • Schubert, H. 1999. On the turbulence-controlled microprocesses in flotation machines. International Journal of Mineral Processing 56:257–76. doi:10.1016/S0301-7516(98)00048-9.
  • Wang, A., X. K. Yan, L. J. Wang, Y. J. Cao, and J. T. Liu. 2015. Effect of cone angles on single-phase flow of a laboratory cyclonic-static micro-bubble flotation column: Ply measurement and CFD simulations. Separation and Purification Technology 149:308–14. doi:10.1016/j.seppur.2015.06.004.
  • Wang, G. C., G. M. Evans, and G. J. Jameson. 2016. Bubble–Particle detachment in a turbulent vortex I: Experimental. Minerals Engineering 92:196–207. doi:10.1016/j.mineng.2016.03.011.
  • Wang, L. J., Y. H. Wang, X. K. Yan, A. Wang, and Y. J. Cao. 2017. A numerical study on efficient recovery of fine-grained minerals with vortex generators in pipe flow unit of a cyclonic-static micro bubble flotation column. Chemical Engineering Science 158:304–13. doi:10.1016/j.ces.2016.10.037.
  • Xia, W. C. 2016. The effect of heating on the wettability of lignite. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:3521–26. doi:10.1080/15567036.2016.1194914.
  • Xing, Y. W., X. H. Gui, J. T. Liu, Y. J. Cao, and Y. Lu. 2015. Effects of energy input on the laboratory column flotation of fine coal. Separation Science and Technology 50:2559–67. doi:10.1080/01496395.2015.1056362.
  • Yoon, R. H., G. Soni, K. W. Huang, S. Park, and L. Pan. 2016. Development of a turbulent flotation model from first principles and its validation. International Journal of Mineral Processing 156:43–51. doi:10.1016/j.minpro.2016.05.009.
  • Zhu, H. Z., A. L. Valdivieso, J. B. Zhu, F. F. Min, S. X. Song, D. Q. Huang, and S. M. Shao. 2018a. Effect of dodecylamine-frother blend on bubble rising characteristics. Powder Technology 338:586–90. doi:10.1016/j.powtec.
  • Zhu, H. Z., A. L. Valdivieso, J. B. Zhu, S. X. Song, F. F. Min, and M. A. C. Arroyo. 2018b. A study of bubble size evolution in Jameson flotation cell. Chemical Engineering Research and Design 137:461–66. doi:10.1016/j.cherd.2018.08.005.
  • Zhu, J. B., H. Z. Zhu, H. Y. Wang, A. L. Valdivieso, W. Y. Xu, Q. Song, and H. N. Wang. 2018c. Effects of diesel and 2-octanol on water-carrying properties and ultrafine coal flotation. International Journal of Coal Preparation and Utilization 1–10. doi:10.1080/19392699.2018.1452738.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.