208
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the attachment interaction between low-rank coal particles and bubbles

ORCID Icon &
Pages 2405-2419 | Received 09 Dec 2018, Accepted 07 Apr 2019, Published online: 30 Apr 2019

References

  • Ahmed, N., and G. J. Jameson. 1989. Flotation Kinetics. Mineral Processing & Extractive Metallurgy Review 5:77–99. doi:10.1080/08827508908952645.
  • Aktas, Z., and E. T. Woodburn. 1994. The adsorption behaviour of nonionic reagents on two low rank British coals. Minerals Engineering 7:1115–26. doi:10.1016/0892-6875(94)90003-5.
  • Albijanic, B., D. J. Bradshaw, and A. V. Nguyen. 2012. The relationships between the bubble–Particle attachment time, collector dosage and the mineralogy of a copper sulfide ore. Minerals Engineering 36-38:309–13. doi:10.1016/j.mineng.2012.06.007.
  • Albijanic, B., O. Ozdemir, M. A. Hampton, P. T. Nguyen, A. V. Nguyen, and D. Bradshaw. 2014. Fundamental aspects of bubble–Particle attachment mechanism in flotation separation. Minerals Engineering 65:187–95. doi:10.1016/j.mineng.2014.06.008.
  • Albijanic, B., O. Ozdemir, A. V. Nguyen, and D. Bradshaw. 2010. A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Advances in Colloid & Interface Science 159:1–21. doi:10.1016/j.cis.2010.04.003.
  • Cebeci, Y. 2002. The investigation of the floatability improvement of Yozgat Ayrıdam lignite using various collectors. Fuel 81:281–89. doi:10.1016/S0016-2361(01)00165-X.
  • Ceylan, K., and M. Z. Küçük. 2004. Effectiveness of the dense medium and the froth flotation methods in cleaning some Turkish lignites. Energy Conversion and Management 45:1407–18. doi:10.1016/j.enconman.2003.09.011.
  • Clair, B. P. L., A. E. Hamielec, and H. R. Pruppacher. 1970. A Numerical Study of the Drag on a Sphere at Low and Intermediate Reynolds Numbers. Journal of the Atmospheric Sciences 27:308–15. doi:10.1175/1520-0469(1970)027<0308:ANSOTD>2.0.CO;2.
  • Desimoni, E., G. I. Casella, and A. M. Salvi. 1992. XPS/XAES study of carbon fibres during thermal annealing under UHV conditions. Carbon 30:521–26. doi:10.1016/0008-6223(92)90170-2.
  • Drelich, J., J. D. Miller, J. S. Li, and R. Y. Wan. 1997. Bubble Attachment Time Measurements at a Chalcopyrite Surface Using a High-Speed Video System. XX International Mineral Processing Congress 3:53–64.
  • Feng, D., and C. Aldrich. 2001. Influence of pulp pulsation on the batch flotation of galena. Chemical Engineering Communications 186:205–15. doi:10.1080/00986440108912874.
  • Fiedler, R., and D. Bendler. 1992. ESCA investigations on Schleenhain lignite lithotypes and the hydrogenation residues. Fuel 71:381–88. doi:10.1016/0016-2361(92)90026-K.
  • Ge, L., Y. Zhang, Z. Wang, J. Zhou, and K. Cen. 2013. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals. Energy Conversion and Management 71:84–91. doi:10.1016/j.enconman.2013.03.021.
  • Gu, G., Z. Xu, K. Nandakumar, and J. Masliyah. 2003. Effects of physical environment on induction time of air–Bitumen attachment. International Journal of Mineral Processing 69:235–50. doi:10.1016/S0301-7516(02)00128-X.
  • Helbig, C., and H. Baldauf, 1997, Studies on effectiency and adsorption mechanism of mixtures of anionic and cationic reagents in flotation: XXI International Mineral Processing Congress, p. 331–42.
  • Helbig, C., H. Baldauf, J. Mahnke, K. W. Stöckelhuber, and H. J. Schulze. 1998. Investigation of Langmuir monofilms and flotation experiments with anionic/cationic collector mixtures. International Journal of Mineral Processing 53:135–44. doi:10.1016/S0301-7516(97)00077-X.
  • Jenson, V. G. 1959. Viscous Flow Round a Sphere at Low Reynolds Numbers. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 249: 346–66.
  • Jowett, A. 1980. Formation and disruption of particle-bubble aggregates in flotation. Fine Particles Processing 1:720–54.
  • Malysa, K., M. Krasowska, and M. Krzan. 2005. Influence of surface active substances on bubble motion and collision with various interfaces. Advances in Colloid and Interface Science 114-115:205–25. doi:10.1016/j.cis.2004.08.004.
  • Michael, D. H., and P. W. Norey. 1969. Particle collision efficiencies for a sphere. Journal of Fluid Mechanics 37:565–75. doi:10.1017/S0022112069000723.
  • Min, M. A., and A. V. Nguyen. 2013. An exponential decay relationship between micro-flotation rate and back-calculated induction time for potential flow and mobile bubble surface. Minerals Engineering 40:67–80. doi:10.1016/j.mineng.2012.09.017.
  • Nguyen, A. V., J. Ralston, and H. J. Schulze. 1998. On modelling of bubble–Particle attachment probability in flotation. International Journal of Mineral Processing 53:225–49. doi:10.1016/S0301-7516(97)00073-2.
  • Nguyen, A. V., H. J. Schulze, and J. Ralston. 1997. Elementary steps in particle-bubble attachment. International Journal of Mineral Processing 51:183–95. doi:10.1016/S0301-7516(97)00030-6.
  • Pietrzak, R. 2009. XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel 88:1871–77. doi:10.1016/j.fuel.2009.04.017.
  • Ralston, J., S. S. Dukhin, and N. A. Mishchuk. 2002. Wetting film stability and flotation kinetics. Advances in Colloid & Interface Science 95:145–236. doi:10.1016/S0001-8686(00)00083-X.
  • Ralston, J., D. Fornasiero, and R. Hayes. 1999. Bubble–Particle attachment and detachment in flotation. International Journal of Mineral Processing 56:133–64. doi:10.1016/S0301-7516(98)00046-5.
  • Rao, Z., Y. Zhao, C. Huang, C. Duan, and J. He. 2015. Recent developments in drying and dewatering for low rank coals. Progress in Energy and Combustion Science 46:1–11. doi:10.1016/j.pecs.2014.09.001.
  • Saikia, B. K., K. Khound, and B. P. Baruah. 2014. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids. Energy Conversion and Management 81:298–305. doi:10.1016/j.enconman.2014.02.043.
  • Schulze, H. J., K. W. Stöckelhuber, and A. Wenger. 2001. The influence of acting forces on the rupture mechanism of wetting films-nucleation or capillary waves. Colloids and Surfaces A: Physicochemical and Engineering Aspects 192:61–72. doi:10.1016/S0927-7757(01)00717-8.
  • Subasinghe, G. K. N., and B. Albijanic. 2014. Influence of the propagation of three phase contact line on flotation recovery. Minerals Engineering 57:43–49. doi:10.1016/j.mineng.2013.12.008.
  • Sutherland, K. L. 1948. Physical Chemistry of Flotation. XI. Kinetics of the Flotation Process. The Journal of Physical and Colloid Chemistry 52:394–425. doi:10.1021/j150458a013.
  • Vamvuka, D., and V. Agridiotis. 2001. The effect of chemical reagents on lignite flotation. International Journal of Mineral Processing 61:209–24. doi:10.1016/S0301-7516(00)00034-X.
  • Van, A. N. 1993. On the sliding time in flotation. International Journal of Mineral Processing 37:1–25. doi:10.1016/0301-7516(93)90002-R.
  • Vapur, H., O. Bayat, and M. Uçurum. 2010. Coal flotation optimization using modified flotation parameters and combustible recovery in a Jameson cell. Energy Conversion and Management 51:1891–97. doi:10.1016/j.enconman.2010.02.019.
  • Verrelli, D. I., and B. Albijanic. 2015. A comparison of methods for measuring the induction time for bubble–Particle attachment. Minerals Engineering 80:8–13. doi:10.1016/j.mineng.2015.06.011.
  • Verrelli, D. I., W. J. Bruckard, P. T. L. Koh, M. P. Schwarz, and B. Follink. 2014. Particle shape effects in flotation. Part 1: Microscale experimental observations. Minerals Engineering 58:80–89. doi:10.1016/j.mineng.2014.01.004.
  • Verrelli, D. I., P. T. L. Koh, and A. V. Nguyen. 2011. Particle–Bubble interaction and attachment in flotation. Chemical Engineering Science 66:5910–21. doi:10.1016/j.ces.2011.08.016.
  • Wang, W., Z. Zhou, K. Nandakumar, J. H. Masliyah, and Z. Xu. 2005. An induction time model for the attachment of an air bubble to a hydrophobic sphere in aqueous solutions. International Journal of Mineral Processing 75:69–82. doi:10.1016/j.minpro.2004.04.009.
  • Xia, W., and G. Xie. 2014. Changes in the hydrophobicity of anthracite coals before and after high temperature heating process. Powder Technology 264:31–35. doi:10.1016/j.powtec.2014.05.016.
  • Xia, W., J. Yang, and C. Liang. 2013. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technology 237:1–8. doi:10.1016/j.powtec.2013.01.017.
  • Xia, W., J. Yang, and C. Liang. 2014. Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM. Applied Surface Science 293:293–98. doi:10.1016/j.apsusc.2013.12.151.
  • Yoon, R., and J. Yordan. 1991. Induction Time Measurements for the Quartz-Amine Flotation System. Journal of Colloid and Interface Science 141:374–83. doi:10.1016/0021-9797(91)90333-4.
  • Yoon, R. H. 2000. The role of hydrodynamic and surface forces in bubble–Particle interaction. International Journal of Mineral Processing 58:129–43. doi:10.1016/S0301-7516(99)00071-X.
  • Zhou, F., L. Wang, Z. Xu, Q. Liu, and R. Chi. 2014. Interaction of reactive oily bubble in flotation of bastnaesite. Journal of Rare Earths 32:772–78. doi:10.1016/S1002-0721(14)60139-3.
  • Zhou, F., L. Wang, Z. Xu, Q. Liu, and R. Chi. 2015. Reactive oily bubble technology for flotation of apatite, dolomite and quartz. International Journal of Mineral Processing 134:74–81. doi:10.1016/j.minpro.2014.11.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.