1,119
Views
91
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigations on thermal properties of nano-SiO2/paraffin phase change material (PCM) for solar thermal energy storage applications

ORCID Icon, &
Pages 2420-2433 | Received 22 Dec 2018, Accepted 07 Apr 2019, Published online: 30 Apr 2019

References

  • Ahmed, S. F., M. Khalid, W. Rashmi, A. Chan, and K. Shahbaz. 2017. Recent progress in solar thermal energy storage using nanomaterials. Renewable and Sustainable Energy Reviews 67:450–60. doi:10.1016/j.rser.2016.09.034.
  • AlMaadeed, M. A., S. Labidi, I. Krupa, and M. Ouederni. 2015. Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene. Arabian Journal of Chemistry 8 (3):388–99. doi:10.1016/j.arabjc.2014.01.006.
  • Amin, M., N. Putra, E. A. Kosasih, E. Prawiro, R. A. Luanto, and T. M. I. Mahlia. 2017. Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Applied Thermal Engineering 112:273–80. doi:10.1016/j.applthermaleng.2016.10.085.
  • Anghel, E. M., A. Georgiev, S. Petrescu, R. Popov, and M. Constantinescu. 2014. Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage. Journal of Thermal Analysis and Calorimetry 117:557–66. doi:10.1007/s10973-014-3775-6.
  • Cabeza, L. F., A. Castell, C. D. Barreneche, A. De Gracia, and A. I. Fernández. 2011. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews 15 (3):1675–95. doi:10.1016/j.rser.2010.11.018.
  • Cai, Y., H. Ke, J. Dong, Q. Wei, J. Lin, Y. Zhao, and H. Fong. 2011. Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Applied Energy 88 (6):2106–12. doi:10.1016/j.apenergy.2010.12.071.
  • Da Cunha, J. P., and P. Eames. 2016. Thermal energy storage for low and medium temperature applications using phase change materials – A review. Applied Energy 177:227–38. doi:10.1016/j.apenergy.2016.05.097.
  • Deng, Y., J. Li, T. Qian, W. Guan, Y. Li, and X. Yin. 2016. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage. Chemical Engineering Journal 295:427–35. doi:10.1016/j.cej.2016.03.068.
  • Farid, M. M., A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj. 2004. A review on phase change energy storage: Materials and applications. Energy Conversion and Management 45 (9–10):1597–615. doi:10.1016/j.enconman.2003.09.015.
  • Huang, X., Y. Lin, G. Alva, and G. Fang. 2017. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Solar Energy Materials and Solar Cells 170:68–76. doi:10.1016/j.solmat.2017.05.059.
  • Ibrahim, N. I., F. A. Al-Sulaiman, S. Rahman, B. S. Yilbas, and A. Z. Sahin. 2017. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renewable and Sustainable Energy Reviews 74:26–50. doi:10.1016/j.rser.2017.01.169.
  • Jesumathy, S., M. Udayakumar, and S. Suresh. 2012. Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat and Mass Transfer 48 (6):965–78. doi:10.1007/s00231-011-0945-y.
  • Ji, P., H. Sun, Y. Zhong, and W. Feng. 2012. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes. Chemical Engineering Science 81:140–45. doi:10.1016/j.ces.2012.07.002.
  • JianShe, H., Y. Chao, Z. Xu, Z. Jiao, and D. JinXing. 2019. Structure and thermal properties of expanded graphite/paraffin composite phase change material. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (1):86–93. doi:10.1080/15567036.2018.1496199.
  • Kalaiselvam, S., R. Parameshwaran, and S. Harikrishnan. 2012. Analytical and experimental investigations of nano particles embedded phase change materials for cooling application in modern buildings. Renewable Energy 39 (1):375–87. doi:10.1016/j.renene.2011.08.034.
  • Karaipekli, A., A. Biçer, A. Sarı, and V. V. Tyagi. 2017. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Conversion and Management 134:373–81. doi:10.1016/j.enconman.2016.12.053.
  • Karaipekli, A., A. Sari, and K. Kaygusuz. 2009. Thermal characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31 (10):814–23. doi:10.1080/15567030701752768.
  • Kaygusuz, K. 1999. The viability of thermal energy storage. Energy Sources 21 (8):745–55. doi:10.1080/00908319950014489.
  • Kaygusuz, K. 2003. Phase change energy storage for solar heating systems. Energy Sources 25 (8):791–807. doi:10.1080/00908310390207837.
  • Khodadadi, J. M., and S. F. Hosseinizadeh. 2007. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International Communications in Heat and Mass Transfer 34 (5):534–43. doi:10.1016/j.icheatmasstransfer.2007.02.005.
  • Kumar, P. M., and K. Mylsamy. 2018. Experimental investigation of solar water heater integrated with a nanocomposite phase change material. Journal of Thermal Analysis and Calorimetry 1–12. doi:10.1007/s10973-018-7937-9.
  • Lin, S. C., and H. H. Al-Kayiem. 2012. Thermophysical properties of nano particles-phase change material compositions for thermal energy storage. Applied Mechanics and Materials 232:127–31. doi:10.4028/www.scientific.net/AMM.232.127.
  • Liu, C., Z. Rao, J. Zhao, Y. Huo, and Y. Li. 2015. Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement. Nano Energy 13:814–26. doi:10.1016/j.nanoen.2015.02.016.
  • Mehrali, M., S. T. Latibari, M. Mehrali, T. M. I. Mahlia, H. S. C. Metselaar, M. S. Naghavi, E. Sadeghinezhad, and A. R. Akhiani. 2013. Preparation and characterization of palmtitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape stabilized phase change material. Applied Thermal Engineering 61 (2):633–40. doi:10.1016/j.applthermaleng.2013.08.035.
  • Mohamed, N. H., F. S. Soliman, H. El Maghraby, and Y. M. Moustfa. 2017. Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: Energy storage. Renewable and Sustainable Energy Reviews 70:1052–58. doi:10.1016/j.rser.2016.12.009.
  • Murugan, P., P. Ganesh Kumar, V. Kumaresan, M. Meikandan, K. Malar Mohan, and R. Velraj. 2018. Thermal energy storage behaviour of nanoparticle enhanced PCM during freezing and melting. Phase Transitions, A Multinational Journal 91:254–70. doi:10.1080/01411594.2017.1372760.
  • Naghavi, M. S., K. S. Ong, I. A. Badruddin, M. Mehrali, and H. S. C. Metselaar. 2017. Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes. Energy 127:101–15. doi:10.1016/j.energy.2017.03.097.
  • Rao, Z. H., S. H. Wang, Y. L. Zhang, G. Q. Zhang, and J. Y. Zhang. 2014. Thermal properties of paraffin/nano-AlN phase change energy storage materials. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (20):2281–86. doi:10.1080/15567036.2011.590869.
  • Şahan, N., and H. Paksoy. 2017. Investigating thermal properties of using nano-tubular ZnO powder in paraffin as phase change material composite for thermal energy storage. Composites Part B: Engineering 126:88–93. doi:10.1016/j.compositesb.2017.06.006.
  • Sari, A., A. Karaipekli, R. Eroğlu, and A. Biçer. 2013. Erythritol tetra myristate and erythritol tetra laurate as novel phase change materials for low temperature thermal energy storage. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35 (14):1285–95. doi:10.1080/15567036.2010.516323.
  • Sharshir, S. W., G. Peng, L. Wu, F. A. Essa, A. E. Kabeel, and N. Yang. 2017. The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Applied Energy 191:358–66. doi:10.1016/j.apenergy.2017.01.067.
  • Shukla, A., K. Kant, and A. Sharma. 2017. Solar still with latent heat energy storage: A review. Innovative Food Science & Emerging Technologies 41:34–46. doi:10.1016/j.ifset.2017.01.004.
  • Wang, J., H. Xie, Z. Xin, Y. Li, and L. Chen. 2009. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochimica Acta 488 (1–2):39–42. doi:10.1016/j.tca.2009.01.022.
  • Wu, S. Y., D. S. Zhu, X. R. Zhang, and J. Huang. 2010. Preparation and melting/freezing characteristics of Cu/paraffin nanofluids as phase-change material (PCM). Energy & Fuels : An American Chemical Society Journal 24 (3):1894–98. doi:10.1021/ef9013967.
  • Xiao, X., P. Zhang, and M. Li. 2013. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Applied Energy 112:1357–66. doi:10.1016/j.apenergy.2013.04.050.
  • Yang, Y., J. Luo, G. Song, Y. Liu, and G. Tang. 2014. The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials. Thermochimica Acta 597:101–06. doi:10.1016/j.tca.2014.10.014.
  • Yu, W., D. M. France, J. L. Routbort, and S. U. Choi. 2008. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering 29 (5):432–60. doi:10.1080/01457630701850851.
  • Zeng, J. L., L. X. Sun, F. Xu, Z. C. Tan, Z. H. Zhang, J. Zhang, and T. Zhang. 2007. Study of a PCM based energy storage system containing Ag nano particles. Journal of Thermal Analysis and Calorimetry 87 (2):371–75. doi:10.1007/s10973-006-7783-z.
  • Zhong, Y., Q. Guo, S. Li, and L. Liu. 2010a. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Solar Energy Materials and Solar Cells 94 (6):1011–14. doi:10.1016/j.solmat.2010.02.004.
  • Zhong, Y. J., S. Z. Li, X. H. Wei, Z. J. Liu, Q. G. Guo, J. L. Shi, and L. Liu. 2010b. Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon 48 (1):300–04. doi:10.1016/j.carbon.2009.09.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.