517
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Spilled oil absorption from Caspian sea water by graphene/chitosan nano composite

, , , &
Pages 2856-2872 | Received 26 Jan 2019, Accepted 28 Apr 2019, Published online: 19 May 2019

References

  • Abesi, A., and M. Saidi. 2010. Hydrocarbon’s origin in deposits of caspian sea south coast in the domain of mazandaran and golestan provinces. Jes 36 (55):43–58.
  • Cao, N., Q. Lyu, J. Li, Y. Wang, B. Yang, S. Szunerits, and R. Boukherroub. 2017. Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chemical Engineering Journal 326:17–28. doi:10.1016/j.cej.2017.05.117.
  • Choi, S., T. Kwon, H. Im, D. Moon, D. Baek, M. Seol, J. Duarte, Y. Choi, and A. Polydimethylsiloxane. 2011. (PDMS) sponge for the selective absorption of oil from water. ACS Appl. Mater. Interfaces 3:4552–56. doi:10.1021/am201352w.
  • Choudhury, P., P. Mondal, S. Majumdar, S. Saha, and G. C. Sahoo. 2018. Preparation of ceramic ultrafiltration membrane using green synthesized CuO nanoparticles for chromium (VI) removal and optimization by response surface methodology. Journal of Cleaner Production 203:511–20. doi:10.1016/j.jenvman.2018.08.088.
  • Ding, X., R. Wang, X. Zhang, Y. Zhang, S. Deng, F. Shen, X. Zhang, H. Xiao, and L. Wang, Ding X, Wang R, Zhang X, et al. 2014. New magnetic expanded graphite for removal of oil leakage. Marine Pollution Bulletin 81: 185–90. doi: 10.1016/j.marpolbul.2014.01.056.
  • Efendiyeva, I. M. 2000. Ecological problems of oil exploitation in the Caspian Sea area. Journal of Petroleum Science & Engineering 28:227–31. doi:10.1016/S0920-4105(00)00081-4.
  • Farooq, U., I. Tabanb, and P. Dalinga. 2018. Study of the oil interaction towards oil spill recovery skimmer material Effect of the oil weathering and emulsification properties. Marine Pollution Bulletin 135:119–28. doi:10.1016/j.marpolbul.2018.06.017.
  • Flores, J., A. Pavía-Sanders, and Y. Chen. 2015. Pochan D and wooley k, recyclable hybrid inorganic/organic magnetically active networks for the sequestration of crude oil from aqueous environments. Chemical Materials 27:3775−3782. doi:10.1021/acs.chemmater.5b01523.
  • Frindy, S., A. Primo, H. Ennajih, A. Qaissd, R. Bouhfidd, M. Lahcinic, M. Essassid, H. Garcia, and A. Kadi. 2017. Chitosan–Graphene oxide films and CO2-dried porous aerogelmicrospheres: Interfacial interplay and stability. Carbhyd Poly 167:297–305. doi:10.1016/j.carbpol.2017.03.034.
  • Hassanshahian, M., G. Emtiazi, and S. Cappello. 2012. Isolation and characterization of crude-oil-degrading bacteria from the Persian gulf and the Caspian sea. Marine Pollution Bulletin 64:7–12. doi:10.1016/j.marpolbul.2011.11.006.
  • Hoai, N., N. Sang, and D. Hoang. 2017. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal. Materials Science and Engineering B 216:10–15. doi:10.1016/j.mseb.2016.06.007.
  • Huang, J., H. Liu, S. Chen, and C. Ding. 2017. Graphene aerogel prepared through double hydrothermal reduction as high performance oil adsorbent. Materials Science & Engineering. B 226:141–50. doi:10.1016/j.mseb.2017.09.014.
  • Kabiri, S., D. Tran, T. Altalhi, and D. Losic. 2014. Outstanding adsorption performance of graphene–Carbon nanotube aerogels for continuous oil removal. Carbon 80:523–33. doi:10.1016/j.carbon.2014.08.092.
  • Keshavarz, A., H. Zilouei, A. Abdolmaleki, and A. Asadinezhad. 2015. Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam. Journal of Environmental Management 157:279–86. doi:10.1016/j.jenvman.2015.04.030.
  • Li, J., F. Wang, and C. Liu. 2012. Tri-isocyanate reinforced graphene aerogel and its use for crude oil adsorption. Journal of Colloid and Interface Science 382:13–16. doi:10.1016/j.jcis.2012.05.040.
  • Liang, S., Z. Shen, M. Yi, L. Liu, X. Zhang, and S. Ma. 2016. In-situ exfoliated graphene for high-performance water-based Lubricants. Carbon 96:1181–90. doi:10.1016/j.carbon.2015.10.077.
  • Lim, M., M. Hu, S. Manandhar, A. Sakshaug, A. Strong, L. Riley, and P. Pauzauskie. 2015. Ultrafast solegel synthesis of graphene aerogel materials. Carbon 95:616–24. doi:10.1016/j.carbon.2015.08.037.
  • Lutfullin, A., N. Shornikova, V. Vasiliev, K. V. Pokholok, V. A. Osadchaya, M. I. Saidaminov, N. E. Sorokina, and V. V. Avdeev. 2014. Petroleum products and water sorption by expanded graphite enhanced with magnetic iron phases. Carbon 66:417–25. doi:10.1016/j.carbon.2013.09.017.
  • Majdi, H., J. Esfahani, and M. Mohebbi. 2019. Optimization of convective drying by response surface methodology. Computers and Electronics in Agriculture 156:574–84. doi:10.1016/j.compag.2018.12.021.
  • Munuera, J. M., J. I. Paredes, S. Villar-Rodil, et al. 2018. High quality, low-oxidized graphene via anodic exfoliation with table salt as an efficient oxidation-preventing co-electrolyte for water/oil remediation and capacitive energy storage applications. Appl Mat Tod 11:246–54. doi:10.1016/j.apmt.2018.03.002.
  • Najib, T., M. Solgi, A. Farazmand, S. M. Heydarian, and B. Nasernejad. 2017. Optimization of sulfate removal by sulfate reducing bacteria using response surface methodology and heavy metal removal in a sulfidogenic UASB reactor. Journal of Environmental Chemical Engineering 5:3256–65. doi:10.1016/j.jece.2017.06.016.
  • Ortiz, N., R. Cabanzo, and M.-O. Enrique. 2019. Crude oil/water emulsion separation using graphene oxide and aminemodified graphene oxide particles. Fuel 240:162–68. doi:10.1016/j.fuel.2018.11.151.
  • Parvez, K.H., Z. H. Wu, R. Li, et al. 2014. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society 136:6083−6091. doi:10.1021/ja5017156.
  • Radnia, H., A. Solaimany Nazar, and A. Rashidi. 2019. Effect of asphaltene on the emulsions stabilized by graphene oxide: A potential application of graphene oxide in enhanced oil recovery. Journal of Petroleum Science and Engineering 175:868–80. doi:10.1016/j.petrol.2019.01.034.
  • Rahmani, Z., M. Samadi, A. Kazemi, A. Rashidi, and A. Rahmani. 2017. Nanoporous graphene and graphene oxide-coated polyurethane sponge as a highly efficient, superhydrophobic, and reusable oil spill absorbent. Journal of Environmental Chemical Engineering 5 (5):5025–32. doi:10.1016/j.jece.2017.09.028.
  • Rotaru, A., C. Cojocaru, I. Cretescu, M. Pinteala, D. Timpu, L. Sacarescu, and V. Harabagiu. 2014. Performances of clay aerogel polymer composites for oil spill sorption: Experimental design and modeling. Separation and Purification Technology 133:260–75. doi:10.1016/j.seppur.2014.06.059.
  • Shanmugaprakash, M., S. Venkatachalam, K. Rajendran, and A. Pugazhendhi. 2018. Biosorptive removal of Zn (II) ions by Pongamia oil cake (Pongamia pinnata) in batch and fixed-bed column studies using response surface methodology and artificial neural network. Journal of Environmental Management 227:216–28. doi:10.1016/j.jclepro.2018.08.289.
  • Sharma, D., K. Yadavb, and S. Kumar. 2018. Biotransformation of flower waste composting: Optimization of waste combinations using response surface methodology. Bioresource Technology 270:198–207. doi:10.1016/j.biortech.2018.09.036.
  • Sharma, R., V. Mahto, and H. Vuthaluru. 2019. Synthesis of PMMA/modified graphene oxide nanocomposite pour point depressant and its effect on the flow properties of Indian waxy crude oil. Fuel 235:1245–59. doi:10.1016/j.fuel.2018.08.125.
  • Shirneshan, G., A. Bakhtiari, and M. Memariani. 2017. Identifying the source of petroleum pollution in sediment cores of southwest of the Caspian Sea using chemical fingerprinting of aliphatic and alicyclic hydrocarbons. Marine Pollution Bulletin 115:383–90. doi:10.1016/j.marpolbul.2016.12.022.
  • Takeuchi, K., M. Fujishige, H. Kitazawa, N. Akuzawa, J. O. Medina, A. Morelos-Gomez, R. Cruz-Silva, T. Araki, T. Hayashi, M. Terrones, et al. 2015. Oil sorption by exfoliated graphite from dilute oil–Water emulsion for practical applications in produced water treatments. Journal Wat Proceedings Engineering 8:91–98. doi:10.1016/j.jwpe.2015.09.002.
  • Takeuchi, K., H. Kitazawa, M. Fujishige, N. Akuzawa, J. Ortiz-Medina, A. Morelos-Gomez, R. Cruz-Silva, T. Araki, T. Hayashi, and M. Endo. 2017. Oil removing properties of exfoliated graphite in actual produced water Treatment. Journal Wat Proceedings Engineering 20:226–31. doi:10.1016/j.jwpe.2017.11.009.
  • Vafai, F., V. Hadipour, and A. Hadipour. 2013. Determination of shoreline sensitivity to oil spills by use of GIS and fuzzy model. Case Study -The Coastal Areas of Caspian Sea in North of Iran. Oce & Coas Manag 71:123–30. doi:10.1016/j.ocecoaman.2012.05.033.
  • Vojoudi, H., A. Badiei, S. Bahar, G. Mohammadi Ziarani, F. Faridbod, and M. R. Ganjali. 2017a. Post-modification of nanoporous silica type SBA-15 by bis(3-triethoxysilylpropyl)tetrasulfide as an efficient adsorbent for arsenic removal. Power Technology 319:271–78. doi:10.1016/j.powtec.2017.06.028.
  • Vojoudi, H., A. Badiei, Bahar, S. Bahar, G. Mohammadi Ziarani, F. Faridbod, and M. R. Ganjali. 2017b. A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. Journal of Magnetism and Magnetic Materials 441:193–203. doi:10.1016/j.jmmm.2017.05.065.
  • Wang, G., Q. Sun, Y. Zhang, J. Fan, and L. Ma. 2010. Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution. Desalination 263:183–88. doi:10.1016/j.desal.2010.06.056.
  • Wang, Y., B. Wang, J. Wang, Y. Ren, C. Xuan, and C. Liu. 2018. Superhydrophobic and superoleophilic porous reduced grapheneoxide/polycarbonate monoliths for high-efficiency oil/water separation. Journal of Hazardous Materials 344:849–56. doi:10.1016/j.jhazmat.2017.11.040.
  • Yang, S., K. Chang, Y. Huang, Y. Lee, H. Tien, S. Li, Y. Lee, C. Liu, C. Ma, and C. Hu. 2012. A powerful approach to fabricate nitrogen-doped graphene sheets with high specific surface area. Electchem Communication 14:39–42. doi:10.1016/j.elecom.2011.10.028.
  • Yavari, S., A. Malakahmad, N. Sapari, and S. Yavari. 2017. Sorption properties optimization of agricultural wastes-derived biochars using response surface methodology. Process Safety and Environmental Protection 109:509–19. doi:10.1016/j.psep.2017.05.002.
  • Yu, H., B. Zhang, C. Bulin, R. Li, and R. Xing. 2016. High-efficient synthesis of graphene oxide based on improved hummers method. Scientific Reports 6 (36143):1–7. doi:10.1038/srep36143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.