131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of catalytic deoxygenation of soluble species from a coal using mass spectrometers

, , , , , , , & show all
Pages 1363-1372 | Received 08 Mar 2019, Accepted 27 May 2019, Published online: 03 Jul 2019

References

  • Abbas, M., J. Zhang, K. Lin, and J. Chen. 2018. Fe3O4 nanocubes assembled on RGO nanosheets: Ultrasound induced in-situ and eco-friendly synthesis, characterization and their excellent catalytic performance for the production of liquid fuel in Fischer-tropsch synthesis. Ultrasonics Sonochemistry 42:271–82. doi:10.1016/j.ultsonch.2017.11.031.
  • Ambursa, M. M., L. H. Voon, J. J. Ching, Y. Yahaya, and J. N. Appaturi. 2019. Catalytic hydrodeoxygenation of dibenzofuran to fuel graded molecule over mesoporous supported bimetallic catalysts. Fuel 236:236–43. doi:10.1016/j.fuel.2018.08.162.
  • Chou, C.-L. 2012. Sulfur in coals: A review of geochemistry and origins. International Journal of Coal Geology 100:1–13. doi:10.1016/j.coal.2012.05.009.
  • Ding, M., Y.-P. Zhao, Y.-Q. Dou, X.-Y. Wei, X. Fan, J.-P. Cao, Y.-L. Wang, and Z.-M. Zong. 2015. Sequential extraction and thermal dissolution of Shengli lignite. Fuel Processing Technology 135:20–24. doi:10.1016/j.fuproc.2014.09.031.
  • Erdenetsogt, B. O., I. Lee, S. K. Lee, Y. J. Ko, and D. Bat-Erdene. 2010. Solid-state C-13 CP/MAS NMR study of Baganuur coal, Mongolia: Oxygen-loss during coalification from lignite to subbituminous rank. International Journal of Coal Geology 82 (1–2):37–44. doi:10.1016/j.coal.2010.02.005.
  • Fan, X., G.-S. Li, X.-M. Dong, J. Jiang, X.-Y. Wei, and H. I. Kenttamaa. 2018a. Tandem mass spectrometric evaluation of core structures of aromatic compounds after catalytic deoxygenation. Fuel Processing Technology 176:119–23. doi:10.1016/j.fuproc.2018.03.031.
  • Fan, X., X.-Y. Zhang, X.-M. Dong, -J.-J. Liao, Y.-P. Zhao, X.-Y. Wei, F.-Y. Ma, and A. Nulahong. 2018b. Structural insights of four thermal dissolution products of Dongming lignite by using in-source collision-activated dissociation mass spectrometry. Fuel 230:78–82. doi:10.1016/j.fuel.2018.04.164.
  • Iglesias, M. J., J. C. Del Rio, F. Laggoun-Defarge, M. J. Cuesta, and I. Suarez-Ruiz. 2002. Control of the chemical structure of perhydrous coals; FTIR and Py-GC/MS investigation. Journal of Analytical and Applied Pyrolysis 62 (1):1–34. doi:10.1016/s0165-2370(00)00209-6.
  • Lukulay, P. H., and V. L. McGuffin. 1995. Solvent modulation in liquid chromatography: Extension to serially coupled columns. Journal of Chromatography A 691 (1):171–85. doi:10.1016/0021-9673(94)01184-G.
  • Mathews, J. P., and A. L. Chaffee. 2012. The molecular representations of coal - A review. Fuel 96 (1):1–14. doi:10.1016/j.fuel.2011.11.025.
  • Mohamed, M. H., L. D. Wilson, J. R. Shah, J. Bailey, K. M. Peru, and J. V. Headley. 2015. A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water. Chemosphere 136:252–58. doi:10.1016/j.chemosphere.2015.05.029.
  • Mullins, O. C., H. Sabbah, J. Eyssautier, A. E. Pomerantz, L. Barre, A. B. Andrews, Y. Ruiz-Morales, F. Mostowfi, R. McFarlane, L. Goual, et al. 2012. Advances in asphaltene science and the Yen-Mullins model. Energy & Fuels 26 (7):3986–4003. doi:10.1021/ef300185p.
  • Ni, Z. H., Z.-M. Zong, L.-F. Zhang, L.-B. Sun, Y. Liu, X.-H. Yuan, and X.-Y. Wei. 2003. Synergic effect of sulfur on activated carbon-catalyzed hydrocracking of di(1-naphthyl)methane. Energy & Fuels 17 (1):60–61. doi:10.1021/ef020105i.
  • Shui, H., W. Zhao, C. Shan, T. Shui, C. Pan, Z. Wang, Z. Lei, S. Ren, and S. Kang. 2014. Caking and coking properties of the thermal dissolution soluble fraction of a fat coal. Fuel Processing Technology 118:64–68. doi:10.1016/j.fuproc.2013.08.013.
  • Siskin, M., and T. Aczel. 1983. Pyrolysis studies on the structure of ethers and phenols in coal. Fuel 62 (11):1321–26. doi:10.1016/S0016-2361(83)80017-9.
  • Sneddon, J., S. Masuram, and J. C. Richert. 2007. Gas chromatography‐mass spectrometry‐basic principles, instrumentation and selected applications for detection of organic compounds. Analytical Letters 40 (6):1003–12. doi:10.1080/00032710701300648.
  • Viljava, T. R., R. S. Komulainen, and A. O. I. Krause. 2000. Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation. Catalysis Today 60 (1–2):83–92. doi:10.1016/s0920-5861(00)00320-5.
  • Wang, C. F., X. Fan, F. Zhang, S.-Z. Wang, Y.-P. Zhao, X.-Y. Zhao, W. Zhao, T.-G. Zhu, J.-L. Lu, and X.-Y. Wei. 2017a. Characterization of humic acids extracted from a lignite and interpretation for the mass spectra. RSC Advances 7 (33):20677–84. doi:10.1039/c7ra01497j.
  • Wang, F., X. Fan, J.-L. Xia, X.-Y. Wei, Y.-R. Yu, Y.-P. Zhao, J.-P. Cao, W. Zhao, and R.-Y. Wang. 2018a. Insight into the structural features of low-rank coals using comprehensive two dimensional gas chromatography/time-of-flight mass spectrometry. Fuel 212:293–301. doi:10.1016/j.fuel.2017.10.044.
  • Wang, Y.-C., Y.-B. Xue, -X.-X. Wang, S.-H. Cui, and Z.-F. Zhang. 2017b. Effects of small molecules on coal liquefaction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (14):1538–42. doi:10.1080/15567036.2017.1339219.
  • Wang, Z., C. Wang, R. Kang, F. Bin, and X.-Y. Wei. 2018b. Deoxygenation of Chinese long-flame coal in low-temperature pyrolysis. Journal of Thermal Analysis and Calorimetry 131 (3):3025–33. doi:10.1007/s10973-017-6753-y.
  • Xia, W., and W. Zhang. 2017. Characterization of surface properties of Inner Mongolia coal using FTIR and XPS. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (11):1190–94. doi:10.1080/15567036.2017.1315758.
  • Yang, Z., X.-Y. Wei, M. Zhang, D.-G. Teng, Y.-N. Wang, Z.-Q. Liu, and Z.-M. Zong. 2018. Enhanced hydrocracking Car-Calk bridged bonds in the extraction residue from Piliqing subbituminous coal over a recyclable and active magnetic solid superacid. Fuel Processing Technology 176:316–24. doi:10.1016/j.fuproc.2018.03.034.
  • Yu, Y. R., X. Fan, L. Chen, X.-M. Dong, Y.-P. Zhao, B. Li, X.-Y. Wei, F.-Y. Ma, and A. Nulahong. 2019. Mass spectrometric evaluation of the soluble species of Shengli lignite using cluster analysis methods. Fuel 236:1037–42. doi:10.1016/j.fuel.2018.09.063.
  • Zhang, D. D., Z.-M. Zong, J. Liu, Y.-H. Wang, L.-C. Yu, J.-H. Lv, T.-M. Wang, X.-Y. Wei, Z.-H. Wei, and Y. Li. 2015. Catalytic hydroconversion of geting bituminous coal over FeNi-S/gamma-Al2O3. Fuel Processing Technology 133:195–201. doi:10.1016/j.fuproc.2015.01.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.