189
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Predicting coal elemental components from proximate analysis: Explicit versus implicit nonlinear models

Pages 1825-1837 | Received 26 Mar 2019, Accepted 27 May 2019, Published online: 08 Jul 2019

References

  • Akkaya, A. V. 2009. Proximate analysis based multiple regression models for higher heating value estimation of low rank coals. Fuel Process Technology 90:165–70. doi:10.1016/j.fuproc.2008.08.016.
  • Akkaya, A. V. 2013. Predicting coal heating values using proximate analysis via a neural network approach. Energy Source Part A 35 (3):253–60. doi:10.1080/15567036.2010.509090.
  • Akkaya, A. V. 2017 Random forest based estimation model for coal elemental components. International Conference on Energy and Thermal Engineering, Istanbul, Apr 25–28 504–08.
  • Boulesteix, A. L., S. Janitza, and J. Kruppa. 2012. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIREs Data Mining and Knowledge 129:1–31. doi:10.1002/widm.1072.
  • Bragg LJ, Oman JK, Tewalt SJ, Oman CJ, Rega NH, Washington PM,  and Finkelman RB. 1998. U.S. geological survey coal quality (COALQUAL) database; version 2.0. doi:10.3133/ofr97134
  • Breiman, L. 2001. Random forests. Machine Learning 45:5–32. doi:10.1023/A:1010933404324.
  • Chakma, S., R. C. Vaishya, and A. K. Yadav. 2016. Modeling chemical compositions of municipal solid waste. Environmental Geotechnics 3:65–77. doi:10.1680/envgeo.13.00082.
  • Ghugare, S. B., S. Tiwary, and S. S. Tambe. 2017. Computational intelligence based models for prediction of elemental composition of solid biomass fuels from proximate analysis. International Journal Of Systems Assurance Engineering And Management 8:2083–96. doi:10.1007/s13198-014-0324-4.
  • Goudarzi, N., D. Shahsavani, F. Emadi-Gandaghi, and C. M. Arab. 2014. Application of random forests method to predict the retention indices of some polycyclic aromatic hydrocarbons. Journal of Chromatography. A 1333:25–31. doi:10.1016/j.chroma.2014.01.048.
  • Khandelwal, M., and T. N. Singh. 2010. Prediction of macerals contents of Indian coals from proximate and ultimate analyses using artificial neural networks. Fuel 89 (5):1101–09. doi:10.1016/j.fuel.2009.11.028.
  • Klasson, T. K. 2017. Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass and Bioenergy 96:50–58. doi:10.1016/j.biombioe.2016.10.011.
  • Li, H., S. Yang, W. Zhao, Z. Xu, S. Zhao, and X. Liu. 2016. Prediction of the physicochemical properties of woody biomass using linear prediction and artificial neural networks. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (11):1569–73. doi:10.1080/15567036.2014.934412.
  • MATLAB. The language of technical computing. (R2014b). Natick, MA: The Math Works Inc.
  • Miraboutalebi, S. M. R., P. Kazemi, and P. Bahrami. 2016. Fatty Acid Methyl Ester (FAME) composition used for estimation of biodiesel cetane number employing random forest and artificial neural networks: A new approach. Fuel 166:143–51. doi:10.1016/j.fuel.2015.10.118.
  • Nhuchhen, D. R. 2016. Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel 180:348–56. doi:10.1016/j.fuel.2016.04.058.
  • Parikh, J., S. Channiwala, and G. Ghosal. 2007. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86:1710–19. doi:10.1016/j.fuel.2006.12.029.
  • Patel SU, Jeevan KB, Yogesh PB, Sharma BK, Saha S, Biswas S, Chaudhury A, Tambe SS, and Kulkarni BD. 2007. Estimation of gross calorific value of coals using artificial neural networks. Fuel 86:334–44. doi:10.1016/j.fuel.2006.07.036.
  • Petrakova, A., M. Affenzeller, and G. Merkurjeva. 2015. Heterogeneous versus homogeneous machine learning ensembles. Information Technology and Management Science 18:135–40. doi:10.1515/itms-2015-0021.
  • Rodriguez-Galiano, V. F., M. Sanchez-Castillo, J. Dash, P. M. Atkinson, and J. Ojeda-Zujar. 2016. Modelling interannual variation in the spring and autumn land surface phenology of the European forest. Biogeosciences 13:3305–17. doi:10.5194/bg-13-3305-2016.
  • Saptoro, A., H. M. Yao, M. O. Tadé, and H. B. Vuthaluru. 2008. Prediction of coal hydrogen content for combustion control in power utility using neural network approach. Chemometrics and Intelligent Laboratory Systems 94:149–59. doi:10.1016/j.chemolab.2008.07.007.
  • Shen, J., S. Zhu, X. Liu, H. Zhang, and J. Tan. 2010. The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion and Management 51:983–87. doi:10.1016/j.enconman.2009.11.039.
  • Steinberg, D., M. Golovnya, and N. S. Cardell A brief overview to random forests Accessed February 12, 2019. http://nymetro.chapter.informs.org/prac_cor_pubs/RandomForest_SteinbergD.pdf.
  • Tewalt SJ, Belkin HE, SanFilipo JR, Merrill MD, Palmer CA, Warwick PD, Karlsen AW, Finkelman RB, and Park AJ. 2010. Survey, U.S.G. chemical analyses in the world coal quality inventory, version 1. Report 2010-1196. Reston, Virginia.
  • Vakkilainen, E. K. 2000. Estimation of elemental composition from proximate analysis of black liquor. Paperi Ja Puu 82:450–54.
  • Yi, L., J. Feng, Y. H. Qin, and W. Y. Li. 2017. Prediction of elemental composition of coal using proximate analysis. Fuel 193:315–21. doi:10.1016/j.fuel.2016.12.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.