457
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the oxidation behavior of a Turkey coal at low temperature by TGA, FTIR and BET analysis

Pages 2370-2380 | Received 08 May 2019, Accepted 11 Jul 2019, Published online: 23 Jul 2019

References

  • Avila, C., T. Wu, and E. Lester. 2014. Estimating the spontaneous combustion potential of coals using thermogravimetric analysis. Energy & Fuels : an American Chemical Society Journal 28:1765–177. doi:10.1021/ef402119f.
  • Baris, K., S. Kizgut, and V. Didari. 2012. Low-temperature oxidation of some Turkish coals. Fuel 93:423–32. doi:10.1016/j.fuel.2011.08.066.
  • Ceylan, K., H. Karaca, and Y. Önal. 1999. Thermogravimetric analysis of pretreated Turkish lignites. Fuel 78:1109–16. doi:10.1016/S0016-2361(99)00009-5.
  • Chang, L., Z. Yan-Mina, and Y. Ming-Gao. 2009. Research on low-temperature oxidation and pyrolysis of coal by thermal analysis experiment. Procedia Earth and Planetary Science 1:718–23. doi:10.1016/j.proeps.2009.09.113.
  • Chen, G., X. Ma, M. Lin, Y. Lin, and Z. Yu. 2015. Study on thermochemical kinetic characteristics and interaction during low temperature oxidation of blended coals. Journal of the Energy Institute 88:221–28. doi:10.1016/j.joei.2014.09.007.
  • Coats, A., and J. Redfern. 1964. Kinetic Parameters from Thermogravimetric Data. Nature 201:68–69. doi:10.1038/201068a0.
  • Doğan, F., İ. Kaya, and A. Bilici. 2011. Azomethine-based phenol polymer: Synthesis, characterization and thermal study. Synthetic Metals 161:79–86. doi:10.1016/j.synthmet.2010.11.001.
  • Elbeyli, Y., and S. Pişkin. 2006. Combustion and pyrolysis characteristics of tunçbilek lignite. Journal of Thermal Analysis and Calorimetry 83 (3):721–26. doi:10.1007/s10973-005-9995-z.
  • Iglesias, M. J., G. de la Puente, E. Fuente, and J. J. Pis. 1998. Compositional and structural changes during aerial oxidation of coal and their relations with technological properties. Vibrational Spectroscopy 17:41–52. doi:10.1016/S0924-2031(98)00017-4.
  • Jankovic, B. 2008. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chemical Engineering Journal (lausanne, Switzerland : 1996) 139:128–35. doi:10.1016/j.cej.2007.07.085.
  • Kaji, R., Y. Hishinuma, and Y. Nakamura. 1985. Low temperature oxidation of coals: Effects of pore structure and coal composition. Fuel 64:297–302. doi:10.1016/0016-2361(85)90413-2.
  • Kök, M. V. 2008. Recent developments in the application of thermal analysis techniques in fossil fuels. Journal of Thermal Analysis and Calorimetry 91 (3):763–73. doi:10.1007/s10973-006-8282-y.
  • Kok, M. V., and E. Ozgur. 2017. Characterization of lignocellulose biomass and model compounds by thermogravimetry. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 39 (2):134–39.
  • Kok, M. V., G. Pokol, C. Keskin, J. Madarasz, and S. Bagci. 2004. Combustion Characteristics of Lignite and Oil Shale Samples by Thermal Analysis Techniques. Journal of Thermal Analysis and Calorimetry 76:247–54. doi:10.1023/B:JTAN.0000027823.17643.5b.
  • Krishnaswamy, S., R. D. Gunn, and P. K. Agarwal. 1996. Low-temperature oxidation of coal 2. An experimental and modelling investigation using a fixed-bed isothermal flow reactor. Fuel 75 (3):344–52. doi:10.1016/0016-2361(95)00177-8.
  • Li, B., G. Chen, H. Zhang, and C. Sheng. 2014. Development of non-isothermal TGA-DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel 118:385–91. doi:10.1016/j.fuel.2013.11.011.
  • Liu, Z., A. Quek, S. K. Hoekman, M. P. Srinivasan, and R. Balasubramanian. 2012. Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresource Technology 123:646–52. doi:10.1016/j.biortech.2012.06.063.
  • López-Fonseca, R., I. Landa, U. Elizundia, M. A. Gutiérrez-Ortiz, and J. R. González-Velasco. 2007. A kinetic study of the combustion of porous synthetic soot. Chemical Engineering Journal 129:41–49. doi:10.1016/j.cej.2006.10.029.
  • Lu, K. M., W. J. Lee, W. H. Chen, and T. C. Lin. 2013. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends. Applied Energy 105:57–65. doi:10.1016/j.apenergy.2012.12.050.
  • Marinova, S. P., L. Gonsalvesh, M. Stefanova, J. Yperman, R. Carleer, G. Reggers, Y. Yürüm, V. Groudeva, and P. Gadjanov. 2009. Combustion behavior of some biodesulphurized coals assessed by TGA/DTA. Thermochimica Acta 497 (1–2):46–51. doi:10.1016/j.tca.2009.08.012.
  • Mishra, V., M. Sharma, S. Chakravarty, and A. Banerjee. 2016. Changes in organic structure and mineral phases transformation of coal during heat treatment on laboratory scale. International Journal of Coal Science & Technology 3 (4):418–28. doi:10.1007/s40789-016-0153-y.
  • Mohalik, N., D. Panigrahi, V. Singh, and R. Singh. 2009. Assessment of spontaneous heating of coal by differential scanning calorimetric technique-an overview. Proceedings of the 2009 Coal Operators' Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 2009, 303–310.
  • Mohalik, N. K., D. C. Panigrahi, and V. K. Singh. 2009. Application of thermal analysis technique to assess proneness of coal to spontaneous heating. Journal of Thermal Analysis and Calorimetry 98:507–19. doi:10.1007/s10973-017-6149-z.
  • Mukherjee, A., S. Mishra, and N. Krishnamurthy. 2011. Thermogravimetric studies and kinetics of decomposition of ammonium yttrium fluoride. Reaction Kinetics, Mechanisms, and Catalysis 103:53–70. doi:10.1007/s11144-011-0287-2.
  • Naktiyok, J. 2018. Determination of the self-heating temperature of coal by means of TGA analysis. Energy & Fuels : an American Chemical Society Journal 32 (2):2299–305. doi:10.1021/acs.energyfuels.7b02296.
  • Naktiyok, J., H. Bayrakçeken, A. K. Özer, and M. Ş. Gülaboğlu. 2017. Investigation of combustion kinetics of Umutbaca-lignite by thermal analysis technique. Journal of Thermal Analysis and Calorimetry 129 (1):531–39. doi:10.1007/s10973-017-6149-z.
  • Nugroho, Y. S., A. C. McIntosh, and B. M. Gibbs. 1999. The spontaneous combustion tendency of blended coal. Fuel 75. Colloquium on the Dynamics of Explosions and Reactive Systems, Heidelberg, Germany, July 25-30.
  • Nugroho, Y. S., A. C. McIntosh, and B. M. Gibbs. 2000. Low-temperature oxidation of single and blended coals. Fuel 79:1951–61. doi:10.1016/S0016-2361(00)00053-3.
  • Nunez, L., F. Fraga, M. R. Nunez, and M. Villanueva. 2000. Thermogravimetric study of the decomposition process of the system BADGE (n=0)/1, 2 DCH. Polymer 41:4635–41. doi:10.1016/S0032-3861(99)00687-4.
  • Ortega, A. 1996. Some successes and failures of the methods based on several experiments. Thermochima Acta 284:379–87. doi:10.1016/0040-6031(95)02766-1.
  • Sahu, H. B., D. C. Panigrahi, and N. M. Mishra. 2004. Assessment of spontaneous heating susceptibility of coal seams by differential scanning calorimetry. Journal of Mines, Metals & Fuels 52 (7-8): 117–21.
  • Scaccia, S. 2013. TG-FTIR and kinetics of devolatilization of Sulcis coal. Journal of Analytical and Applied Pyrolysis 104:95–102. doi:10.1016/j.jaap.2013.09.002.
  • Slovák, V., and B. Taraba. 2010. Effect of experimental conditions on parameters derived from TG-DSC measurements of low-temperature oxidation of coal. Journal of Thermal Analysis and Calorimetry 101:641–46. doi:10.1007/s10973-010-0878-6.
  • Stuart, B. 2004. Infrared Spectroscopy: Fundamentals and Applications, 42. New York: John Wiley & Sons.
  • Tang, W., Y. Liu, X. Yang, and C. Wang. 2004. Kinetic Studies of the Calcination of Ammonium Metavanadate by Thermal Methods. Industrial and Engineering Chemistry Research 43 (9):2054–2059. doi:10.1021/ie030418g.
  • Uludag, S. 2007. A visit to the research on Wits-Ehac index and its relationship to inherent coal properties for Witbank Coalfied. Journal of the Southern African Institute of Mining and Metallurgy 107:671–79.
  • Wang, H. 2007. Kinetic analysis of dehydration of a bituminous coal using the TGA technique. Energy & Fuels : an American Chemical Society Journal 21:3070–75. doi:10.1021/ef070170y.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2002a. Kinetic Modeling of Low-Temperature Oxidation of Coal. Combustion and Flame 131:452–69. doi:10.1016/S0010-2180(02)00416-9.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2002b. Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures. Fuel 81:1913–23. doi:10.1016/S0016-2361(02)00122-9.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003b. Analysis of the mechanism of the low-temperature oxidation of coal. Combustion and Flame 134:107–17. doi:10.1016/S0010-2180(03)00086-5.
  • Wang, H., Z. Dlugogorski, and E. M. Kennedy. 2003a. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science 29:487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, K., J. Deng, Y. Zhang, and C. Wang. 2018. Kinetics and mechanisms of coal oxidation mass gain phenomenon by TG-FTIR and in situ IR analysis. Journal of Thermal Analysis and Calorimetry 132:591–98. doi:10.1007/s10973-017-6916-x.
  • Yang, J., H. Chen, W. Zhao, and J. Zhou. 2016. TG-FTIR-MS study of pyrolysis products evolving from peat. Journal of Analytical and Applied Pyrolysis 117:296–309. doi:10.1016/j.jaap.2015.11.002.
  • Yorulmaz, S. Y., and A. T. Atimtay. 2009. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology 90:939–46. doi:10.1016/j.fuproc.2009.02.010.
  • Yuan, L., and A. C. Smith. 2013. Experimental study on CO and CO2 emissions from spontaneous heating of coals at varying temperatures and O2 concentrations. Journal of Loss Prevention in the Process Industries 26 (6):1321–27. doi:10.1016/j.jlp.2013.08.002.
  • Zhan, J., H. Wang, F. Zhu, and S. Song. 2014. Analysis on the Governing Reactions in Coal Oxidation at Temperatures up to 400°C. International Journal of Clean Coal and Energy 3:19–28. doi:10.4236/ijcce.2014.32003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.