270
Views
22
CrossRef citations to date
0
Altmetric
Articles

NiB loaded acetic acid treated microalgae strain (Spirulina Platensis) to use as a catalyst for hydrogen generation from sodium borohydride methanolysis

Pages 2549-2560 | Received 07 Jan 2019, Accepted 12 May 2019, Published online: 23 Jul 2019

References

  • Amendola, S. C., S. L. Sharp-Goldman, M. S. Janjua, M. T. Kelly, P. J. Petillo, and M. Binder. 1999. An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru Catalyst. ACS Division of Fuel Chemistry, Preprints 44 (4):864–66.
  • Amendola, S. C., S. L. Sharp-Goldman, M. S. Janjua, M. T. Kelly, P. J. Petillo, and M. Binder.2000 February. An ultrasafe hydrogen generator: Aqueous, alkaline borohydride solutions and Ru catalyst. Journal of Power Sources 85 (2):186–89. doi:10.1016/S0378-7753(99)00301-8.
  • Balbay, A., and C. Saka. 2018. Effect of phosphoric acid addition on the hydrogen production from hydrolysis of NaBH4 with Cu based catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects.40 (7), 794–804.
  • Balbay, A., and C. Saka. 2018a. Effect of phosphoric acid addition on the hydrogen production from hydrolysis of NaBH4with Cu based catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 40:794–804. doi:10.1080/15567036.2018.1463311.
  • Balbay, A., and C. Saka. 2018b. The effect of the concentration of hydrochloric acid and acetic acid aqueous solution for fast hydrogen production from methanol solution of NaBH4. International Journal of Hydrogen Energy 43:14265–72. doi:10.1016/j.ijhydene.2018.05.131.
  • Balbay, A., and C. Saka. 2018c. Effect of phosphoric acid and acetic acid addition on the hydrogen evolution using Ni based catalyst prepared in ethanol, methanol, and water solvents. Energy Sources, Part A: Recovery, Utilization and Environmental Effects40 (20), 2442–2450.
  • Balbay, A., and C. Saka. 2018d November. Semi-methanolysis reaction of potassium borohydride with phosphoric acid for effective hydrogen production. International Journal of Hydrogen Energy 43 (46):21299–306. doi:10.1016/j.ijhydene.2018.09.167.
  • Bekirogullari, M. 2019. Catalytic activities of non-noble metal catalysts (CuB, FeB, and NiB) with C. vulgaris microalgal strain support modified by using phosphoric acid for hydrogen generation from sodium borohydride methanolysis. International Journal of Hydrogen Energy 44 (29):14981–14991.
  • Cheng, J., C. Xiang, Y. Zou, H. Chu, S. Qiu, H. Zhang, L. Sunn, and F. Xu. 2015. Highly active nanoporous Co-B-TiO2framework for hydrolysis of NaBH4. Ceramics International 41:899–905. doi:10.1016/j.ceramint.2014.09.007.
  • Dai, H.-B., Y. Liang, P. Wang, and H.-M. Cheng.2008 February. Amorphous Cobalt–Boron/Nickel Foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution. Journal of Power Sources 177 (1):17–23. doi:10.1016/j.jpowsour.2007.11.023.
  • Fernandes, R., N. Patel, A. Miotello, and M. Filippi. 2009. Studies on catalytic behavior of Co-Ni-B in hydrogen production by hydrolysis of NaBH4. Journal of Molecular Catalysis A: Chemical 298 (1–2):1–6. doi:10.1016/j.molcata.2008.09.014.
  • Guella, G., C. Zanchetta, B. Patton, and A. Miotello. 2006 August. New insights on the mechanism of palladium-catalyzed hydrolysis of sodium borohydride from 11 B NMR measurements. The Journal of Physical Chemistry B 110 (34):17024–33. doi:10.1021/jp063362n.
  • Guo, Y., Q. Feng, and J. Ma. 2013. The hydrogen generation from alkaline NaBH4 solution by using electroplated amorphous Co-Ni-P film catalysts. Applied Surface Science 273:253–56. doi:10.1016/j.apsusc.2013.02.025.
  • Huang, Y., Y. Wang, R. Zhao, P. K. Shen, and Z. Wei. 2008. Accurately measuring the hydrogen generation rate for hydrolysis of sodium borohydride on multiwalled carbon nanotubes/Co-B catalysts. International Journal of Hydrogen Energy 33:7110–15. doi:10.1016/j.ijhydene.2008.09.046.
  • Jeong, S. U., R. K. Kim, E. A. Cho, H. J. Kim, S. W. Nam, I. H. Oh, S. A. Hong, and S. H. Kim. 2005. A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. Journal of Power Sources 144 (1):129–34. doi:10.1016/j.jpowsour.2004.12.046.
  • Kaya, M., and A. A Ceyhan., & Şahin, Ö. (2014). Effects of different temperatures and additives on the metastable zone width precipitation kinetics of NaBO2. Russian Journal of Physical Chemistry A, 88(3), 402–408.
  • Kaya, M., M. Bekiroğullari, and C Saka. (2019). Highly efficient CoB catalyst using a support material based on Spirulina microalgal strain treated with ZnCl2 for hydrogen generation via sodium borohydride methanolysis. International Journal of Energy Research
  • Li, F., Q. Li, and H. Kim. 2012. CoB/Open-CNTs catalysts for hydrogen generation from alkaline NaBH4 solution. Chemical Engineering Journal 210:316–24. doi:10.1016/j.cej.2012.08.102.
  • Liu, C. H., B. H. Chen, C. L. Hsueh, J. R. Ku, M. S. Jeng, and F. Tsau. 2009. Hydrogen generation from hydrolysis of sodium borohydride using Ni-Ru nanocomposite as catalysts. International Journal of Hydrogen Energy 34 (5):2153–63. doi:10.1016/j.ijhydene.2008.12.059.
  • Lo, C. F., K. Karan, and B. R. Davis.2007 August. Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures. Industrial & Engineering Chemistry Research 46 (17):5478–84. doi:10.1021/ie0608861.
  • Lo, C. T. F., K. Karan, and B. R. Davis. 2009 June 3. Kinetic assessment of catalysts for the methanolysis of sodium borohydride for hydrogen generation. Industrial & Engineering Chemistry Research 48 (11):5177–84. doi:10.1021/ie8009186.
  • Madkour, F. F., A. E. W. Kamil, and H. S. Nasr. 2012. Production and nutritive value of spirulina platensis in reduced cost media. Egyptian Journal of Aquatic Research 38:51–57. doi:10.1016/j.ejar.2012.09.003.
  • Mitov, M., R. Rashkov, N. Atanassov, and A. Zielonka. 2007. Effects of nickel foam dimensions on catalytic activity of supported Co-Mn-B nanocomposites for hydrogen generation from stabilized borohydride solutions. In Journal of Materials Science 42:3367–72. doi:10.1007/s10853-006-0786-0.
  • Pinto, A. M. F. R., D. S. Falcão, R. A. Silva, and C. M. Rangel. 2006. Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors. International Journal of Hydrogen Energy 31:1341–47. doi:10.1016/j.ijhydene.2005.11.015.
  • Sahiner, N. 2017. Modified multi-wall carbon nanotubes as metal free catalyst for application in H2production from methanolysis of NaBH4. Journal of Power Sources 366:178–84. doi:10.1016/j.jpowsour.2017.09.041.
  • Sahiner, N. 2017b. Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H 2 production from NaBH 4 methanolysis. Applied Catalysis B: Environmental 202 (March):199–206. doi:10.1016/j.apcatb.2016.09.028.
  • Sahiner, N. 2018. Carbon spheres from lactose as green catalyst for fast hydrogen production via methanolysis. International Journal of Hydrogen Energy 43:9687–95. doi:10.1016/j.ijhydene.2018.04.050.
  • Sahiner, N., A. O. Yasar, and N. Aktas. 2016. An alternative to metal catalysts: Poly(4-Vinyl Pyridine)-based polymeric ionic liquid catalyst for H2generation from hydrolysis and methanolysis of NaBH4. International Journal of Hydrogen Energy 41 (45):20562–72. doi:10.1016/j.ijhydene.2016.08.182.
  • Sahiner, N., O. Ozay, E. Inger, and N. Aktas. 2011. Superabsorbent hydrogels for cobalt nanoparticle synthesis and hydrogen production from hydrolysis of sodium boron hydride. Applied Catalysis B: Environmental 102:201–06. doi:10.1016/j.apcatb.2010.11.042.
  • Sahiner, N., S. Butun, and T. Turhan. 2012. P (AAGA) hydrogel reactor for in situ Co and Ni nanoparticle preparation and use in hydrogen generation from the hydrolysis of sodium borohydride. Chemical Engineering Science 82:114–120.
  • Sahiner, N., and S. Demirci. 2017a. Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2production from NaBH4methanolysis. Applied Catalysis B: Environmental 202:199–206. doi:10.1016/j.apcatb.2016.09.028.
  • Saka, C., and A. Balbay. 2018. Fast and effective hydrogen production from ethanolysis and hydrolysis reactions of potassium borohydride using phosphoric acid. International Journal of Hydrogen Energy 43:19976–83. doi:10.1016/j.ijhydene.2018.09.048.
  • Tian, H., Q. Guo, and D. Xu.2010 April. Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. Journal of Power Sources 195 (8):2136–42. doi:10.1016/j.jpowsour.2009.10.006.
  • Wang, L., Z. Li, P. Zhang, G. Wang, and G. Xie. 2016. Hydrogen generation from alkaline NaBH 4 solution using Co–Ni–Mo–P/γ-Al 2 O 3 catalysts. International Journal of Hydrogen Energy 41 (3):1468–76. http://linkinghub.elsevier.com/retrieve/pii/S0360319915307229.
  • Wang, Y., G. Li, S. Wu, Y. Wei, W. Meng, Y. Xie, Y. Cui, X. Lian, Y. Chen, and X. Zhang.2017 June. Hydrogen generation from alkaline NaBH4 solution using nanostructured Co–Ni–P catalysts. International Journal of Hydrogen Energy 42 (26):16529–37. doi:10.1016/j.ijhydene.2017.05.034.
  • Wei, Y., W. Meng, Y. Wang, Y. Gao, K. Qi, and K. Zhang. 2017. Fast hydrogen generation from NaBH4hydrolysis catalyzed by nanostructured Co–Ni–B catalysts. International Journal of Hydrogen Energy 42:6072–79. doi:10.1016/j.ijhydene.2016.11.134.
  • Xu, D., H. Wang, Q. Guo, and S. Ji. 2011. Catalytic behavior of carbon supported Ni-B, Co-B and Co-Ni-B in hydrogen generation by hydrolysis of KBH4. Fuel Processing Technology 92 (8):1606–10. doi:10.1016/j.fuproc.2011.04.006.
  • Xu, D., L. Zhao, P. Dai, and S. Ji. 2012. Hydrogen generation from methanolysis of sodium borohydride over Co/Al2O3catalyst. Journal of Natural Gas Chemistry 21:488–94. doi:10.1016/S1003-9953(11)60395-2.
  • Xu, D., P. Dai, Q. Guo, and X. Yue. 2008a. Improved hydrogen generation from alkaline NaBH4 solution using cobalt catalysts supported on modified activated carbon. International Journal of Hydrogen Energy 33:7371–77. doi:10.1016/j.ijhydene.2008.09.065.
  • Xu, D., P. Dai, X. Liu, C. Cao, and Q. Guo. 2008b. Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution. Journal of Power Sources 182 (2):616–20. doi:10.1016/j.jpowsour.2008.04.018.
  • Yan,K., Y.Li, X.Zhang, X.Yang, N.Zhang, J.Zheng, B.Chen, and K. J.Smith. 2015. Effect of preparation method on Ni2P/SiO2 catalytic activity for NaBH4 methanolysis and phenol hydrodeoxygenation. International Journal of Hydrogen Energy40 (46), 16137–16146.
  • Ye, W., H. Zhang, D. Xu, L. Ma, and B. Yi. 2007a. Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst. Journal of Power Sources 164 (2):544–48. doi:10.1016/j.jpowsour.2006.09.114.
  • Ye, W., H. Zhang, D. Xu, L. Ma, and B. Yi.2007b February. Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst. Journal of Power Sources 164 (2):544–48. doi:10.1016/j.jpowsour.2006.09.114.
  • Zarrouk, C. 1966. Contribution a l'etude d'une cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la croissance et la photosynthese de Spirulina mixima. Thesis. University of Paris, France.
  • Zhang, Q., Y. Wu, X. Sun, and J. Ortega.2007 February. Kinetics of catalytic hydrolysis of stabilized sodium borohydride solutions. Industrial & Engineering Chemistry Research 46 (4):1120–24. doi:10.1021/ie061086t.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.