252
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the effects of Al nanoparticles on CO2 separation from natural gas using gas hydrates

ORCID Icon, &
Pages 2333-2345 | Received 17 May 2019, Accepted 11 Jul 2019, Published online: 08 Aug 2019

References

  • Baek, S., J. Min, Y. H. Ahn, M. Cha, and J. W. Lee. 2019. Effect of hydrophobic silica nanoparticles on the kinetics of methane hydrate formation in water-in-oil emulsions. Energy & Fuels : an American Chemical Society Journal 33 (1):523–30. doi:10.1021/acs.energyfuels.8b03210.
  • Ganji, H., J. Aalaie, S. H. Boroojerdi, and A. Rezaei Rod. 2013. Effect of polymer nanocomposites on methane hydrate stability and storage capacity. Journal of Petroleum Science and Engineering 112:32–35. doi:10.1016/j.petrol.2013.11.026.
  • Horvat, K., P. Kerkar, K. Jones, and D. Mahajan. 2012. Kinetics of the formation and dissociation of gas hydrates from CO2-CH4 mixtures. Energies 5:2248–62. doi:10.3390/en5072248.
  • Jung, J. Y., J. W. Lee, and Y. T. Kang. 2012. CO2 absorption characteristics of nanoparticle suspensions in methanol, J. Journal of Mechanical Science and Technology 26:2285–90. doi:10.1007/s12206-012-0609-y.
  • Kim, N. J., S. S. Park, H. T. Kim, and W. Chun. 2011. A comparative study on the enhanced formation of methane hydrate using CM-95 and CM-100 MWCNTs. International Journal of Heat and Mass Transfer 38:31–36. doi:10.1016/j.icheatmasstransfer.2010.10.002.
  • Kim, W. G., H. U. Kang, K.-M. Jung, and S. H. Kim. 2008. Synthesis of silica nanofluid and application to CO2 absorption. Separation Science and Technology 43:3036–55. doi:10.1080/01496390802063804.
  • Kohl, A., and R. Nielsen. 1997. Gas purification, 476–89. 5th ed. Houston: Gulf Publishing Company.
  • Lee, J. W., and Y. T. Kang. 2013. CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution. Energy 53:206–11. doi:10.1016/j.energy.2013.02.047.
  • Lee, S., S. S. Choi, S. A. Li, and J. A. Eastman. 1999. Measuring of thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer 121:280–89. doi:10.1115/1.2825978.
  • Li, A., L. Jiang, and S. Tang. 2017. An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor. Energy 134:629–37. doi:10.1016/j.energy.2017.06.023.
  • Li, R., X. S. Li, Z. Y. Chen, Y. Zhang, C. G. Xu, and Z. M. Xia. 2018. Anti-agglomerator of tetra-n-butyl ammonium bromide hydrate and its effect on hydrate-based CO2 capture. Energies 11:399. doi:10.3390/en11020399.
  • Lirio Da Silva, C. F., F. L. P. Pessoa, and A. M. C. Uller. 2013. Storage capacity of carbon dioxide hydrates in the presence of sodium dodecyl sulfate (SDS) and tetrahydrofuran (THF). Chemical Engineering Science 96:118–23. doi:10.1016/j.ces.2012.10.022.
  • Lv, Q. N., X. S. Li, C. G. Xu, and Z. Y. Chen. 2012. Experimental investigation of the formation of cyclopentane-methane hydrate in a novel and large-size bubble column reactor. Industrial & Engineering Chemistry Research 51:5967–75. doi:10.1021/ie202422c.
  • Mohammadi, A. 2017. Effect of SDS, silver nanoparticles, and SDS + silver nanoparticles on methane hydrate semicompletion time. Journal of Petroleum Science and Technology 35 (15):1542–48. doi:10.1080/10916466.2017.1316736.
  • Mohammadi, A., M. Manteghian, A. Haghtalab, A. H. Mohammadi, and M. R. Abkenar. 2014. Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticules and SDS. Chemical Engineering Journal 237:387–95. doi:10.1016/j.cej.2013.09.026.
  • Mohammadi, M., A. Haghtalab, and Z. Fakhroueian. 2016. Experimental study and thermodynamic modeling of CO2 gas hydrate formation in presence of zinc oxide nanoparticles. The Journal of Chemical Thermodynamics 96:24–33. doi:10.1016/j.jct.2015.12.015.
  • Olle, B., S. Bucak, T. C. Holmes, L. Bromberg, T. A. Hatton, and D. I. C. Wang. 2006. Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Industrial & Engineering Chemistry Research 45:4355–63. doi:10.1021/ie051348b.
  • Ozerinç, S., S. Kakaç, and A. G. Yazicio. 2010. Enhanced thermal conductivity of nanofluids: A state-of-the-art review. Microfluidics and Nanofluidics 8:145–70. doi:10.1007/s10404-009-0524-4.
  • Pak, B. C., and Y. I. Cho. 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 11 (2):151–70. doi:10.1080/08916159808946559.
  • Park, S., S. Lee, Y. Lee, Y. Lee, and Y. Seo. 2013. Hydrate-based pre-combustion capture of carbon dioxide in the presence of a thermodynamic promoter and porous silica gels. International Journal of Greenhouse Gas Control 14:193–99. doi:10.1016/j.ijggc.2013.01.026.
  • Park, S. S., E. J. An, S. B. Lee, W. Chun, and N. J. Kim. 2012. Characteristics of methane hydrate formation in carbon nanofluids. Journal of Industrial and Engineering Chemistry 18:443–48. doi:10.1016/j.jiec.2011.11.045.
  • Park, S. S., S. B. Li, and N. J. Kim. 2010. Effect of multi-walled carbon nanotubes on methane hydrate formation. Journal of Industrial and Engineering Chemistry 16:551–55. doi:10.1016/j.jiec.2010.03.023.
  • Ricaurte, M., C. Dicharry, D. Broseta, X. Renaud, and J. P. Torré. 2013. CO2 removal from a CO2-CH4 gas mixture by clathrate hydrate formation using THF and SDS as water-soluble hydrate promoters. Industrial & Engineering Chemistry Research 52:899–910. doi:10.1021/ie3025888.
  • Rossi, F., M. Filipponi, and B. Castellani. 2012. Investigation on a novel reactor for gas hydrate production. Applied Energy 99:167–72. doi:10.1016/j.apenergy.2012.05.005.
  • Samer, S., G. B. Varun, J. M. C. Herri, Y. Ouabbas, M. Khodja, M. A. Belloum, S. S. Jitendra, and N. Ramamurthy. 2016. A study on the influence of nanofluids on gas hydrate formation kinetics and their potential: Application to the CO2 capture process. Journal of Natural Gas Science and Engineering 32:95–108. doi:10.1016/j.jngse.2016.04.003.
  • Seo, Y., and S. P. Kang. 2010. Enhancing CO2 separation for pre-combustion capture with hydrate formation in silica gel pore structure. Chemical Engineering Journal 161:308–12. doi:10.1016/j.cej.2010.04.032.
  • Smith, J. M., V. N. Hendrick, M. Abbott, and M. Swihart. 2001. Introduction to chemical engineering thermodynamic. New York: McGraw-Hill.
  • Torres, P. I., J. W. Lee, I. Jung, and Y. T. Kang. 2012. CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber. International Journal of Refrigeration 35:1402–09. doi:10.1016/j.ijrefrig.2012.03.017.
  • Wang, F., Z. Z. Jia, S. J. Luo, S. F. Fu, L. Wang, X. S. Shi, and R. B. Guo. 2015a. Effects of different anionic surfactants on methane hydrate formation. Chemical Engineering Science 137:896–903. doi:10.1016/j.ces.2015.07.021.
  • Wang, Y., J. C. Feng, X. S. Li, Y. Zhang, and G. Li. 2015b. Analytic modelling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods. Energy 90:1931–48. doi:10.1016/j.energy.2015.07.029.
  • Wang, Y., J. C. Feng, and L. X. Sen. 2017. Experimental investigation into methane hydrate dissociation by thermal stimulation with dual vertical well. Energy Procedia 105:4738–44. doi:10.1016/j.egypro.2017.03.1031.
  • Wang, Y., L. X. Sen., G. Li, Y. Zhang, and J. C. Feng. 2014. Experimental investigation into scaling models of methane hydrate reservoir. Applied Energy 115:47–56. doi:10.1016/j.apenergy.2013.10.054.
  • Xia, Z. M., X. S. Li, Z. Y. Chen, K. F. Yan, G. Xu, Q. N. Lv, and J. Cai. 2014. Hydrate-based capture of acidic gases for clean fuels with new synergic additives. Energy Procedia 105:648–53. doi:10.1016/j.egypro.2017.03.370.
  • Xu, C. G., Z. Y. Chen, J. Cai, and L. X. Sen. 2014. Study on pilot-scale CO2 separation from flue gas by the hydrate method. Energy & Fuels : an American Chemical Society Journal 28:1242–48. doi:10.1021/ef401883v.
  • Yang, M., Y. Song, L. Jiang, N. Zhu, Y. Liu, Y. Zhao, B. Dou, and Q. Li. 2013. CO2 hydrate formation and dissociation in cooled porous media: A potential technology for CO2 capture and storage. Environmental Science & Technology 47:9739–46. doi:10.1021/es401536w.
  • Zhou, S. D., K. Jiang, Y. Zhao, Y. Chi, S. Wang, and G. Zhang. 2018. Experimental investigation of CO2 hydrate formation in the water containing graphite nanoparticles and tetra-n-butyl ammonium bromide. Journal of Chemical & Engineering Data 63 (2):389–94. doi:10.1021/acs.jced.7b00785.
  • Zhou, S. D., Y. S. Yu, M. M. Zhao, S. L. Wang, and G. Z. Zhang. 2014. Effect of graphite nanoparticles on promoting CO2 hydrate formation. Energy & Fuels : an American Chemical Society Journal 28:4694–98. doi:10.1021/ef5000886.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.