156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterizations of the coal char using slag as heat carrier in allothermal pyrolysis process

, , &
Pages 2482-2495 | Received 16 May 2019, Accepted 29 Aug 2019, Published online: 05 Sep 2019

References

  • Aboyade, A. O., M. Carrier, E. L. Meyer, H. Knoetze, and J. F. Görgens. 2013. Slow and pressurized co-pyrolysis of coal and agricultural residues. Energy Conversion and Management 65:198–207. doi:10.1016/j.enconman.2012.08.006.
  • Chen, C., Y. Q. Jin, and Y. Chi. 2014. Effects of moisture content and CaO on municipal solid waste pyrolysis in a fixed bed reactor. Journal of Analytical and Applied Pyrolysis 110:108–12. doi:10.1016/j.jaap.2014.08.009.
  • Chun-Hsiung, L. 1985. An integrated approximation formula for kinetic analysis of nonisothermal TGA data. AIChE Journal 31 (6):1036–38. doi:10.1002/aic.690310621.
  • Coal reserves/about BP/BP global. http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy/review-by-energytype/coal/coal-reserves.html. n.d.
  • Du, R. L., K. Wu, D. A. Xu, C. Y. Chao, L. Zhang, and X. D. Du. 2016. A modified Arrhenius equation to predict the reaction rate constant of Anyuan pulverized-coal pyrolysis at different heating rates. Fuel Process Technology 148:295–301. doi:10.1016/j.fuproc.2016.03.011.
  • Du, Y., X. Jiang, G. Lv, X. Ma, Y. Jin, F. Wang, Y. Chi, and J. H. Yan. 2014. Thermal behavior and kinetic of bio-fement residue/coal blends during co-pyrolysis. Energy Conversion and Management 88:459–63. doi:10.1016/j.enconman.2014.08.068.
  • Duan, W. J., P. Li, Z. M. Wang, J. X. Liu, and Q. Qin. 2018. Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system. Energy 142:486–95. doi:10.1016/j.energy.2017.10.048.
  • Duan, W. J., Q. B. Yu, J. X. Liu, L. M. Hou, H. Q. Xie, K. Wang, and Q. Qin. 2016a. Characterization of the hot blast furnace slag on coal gasification reaction. Applied Thermal Engineering 98:936–43. doi:10.1016/j.applthermaleng.2015.12.029.
  • Duan, W. J., Q. B. Yu, J. X. Liu, T. W. Wu, F. Yang, and Q. Qin. 2016b. Experimental and kinetic study of steam gasification of low-rank coal in molten blast furnace slag. Energy 111:859–68. doi:10.1016/j.energy.2016.06.052.
  • Duan, W. J., Q. B. Yu, K. Wang, Q. Qin, L. M. Hou, X. Yao, and T. W. Wu. 2015. ASPEN plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system. Energy Conversion and Management 100:30–36. doi:10.1016/j.enconman.2015.04.066.
  • Duan, W. J., Q. B. Yu, T. W. Wu, F. Yang, and Q. Qin. 2016a. Experimental study on steam gasification of coal using molten blast furnace slag as heat carrier for producing hydrogen-enriched syngas. Energy Conversion and Management 117:513–19. doi:10.1016/j.enconman.2016.03.051.
  • Duan, W. J., Q. B. Yu, T. W. Wu, F. Yang, and Q. Qin. 2016b. The steam gasification of coal with molten blast furnace slag as heat carrier and catalyst: Kinetic study. International Journal of Hydrogen Energy 41:18995–9004. doi:10.1016/j.ijhydene.2016.07.187.
  • Duan, W. J., Q. B. Yu, H. Q. Xie, J. X. Liu, K. Wang, Q. Qin, and Z. C. Han. 2016c. Thermodynamic analysis of synergistic coal gasification using blast furnace slag as heat carrier. International Journal of Hydrogen Energy 41:1502–12. doi:10.1016/j.ijhydene.2015.10.131.
  • Duan, W. J., Q. B. Yu, H. Q. Xie, Q. Qin, and Z. L. Zuo. 2014a. Thermodynamic analysis of hydrogen-rich gas generation from coal/steam gasification using blast furnace slag as heat carrier. International Journal of Hydrogen Energy 39:11611–19. doi:10.1016/j.ijhydene.2014.05.125.
  • Duan, W. J., Q. B. Yu, Z. L. Zuo, Q. Qin, P. Li, and J. X. Liu. 2014b. The technological calculation for synergistic system of BF slag waste heat recovery and carbon resources reduction. Energy Conversion and Management 87:185–90. doi:10.1016/j.enconman.2014.07.029.
  • El-Sayed, S. A., and M. E. Mostafa. 2014. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Conversion and Management 85:165–72. doi:10.1016/j.enconman.2014.05.068.
  • Gomez, A., and N. Mahinpey. 2015. A new method to calculate kinetic parameters independent of the kinetic model: Insights on CO2 and steam gasification. Chemical Engineering Research and Design 95:346–57. doi:10.1016/j.cherd.2014.11.012.
  • Grillo, F. F., R. D. A. Sampaio, J. F. Viana, D. C. R. Espinosa, and J. R. D. Oliveira. 2013. Analysis of pig iron desulfurization with mixtures from the CaO-fluorspar and CaO-sodalite system with the use of computational thermodynamics. Rem Revista Escola De Minas 66 (4):461–65. doi:10.1590/S0370-44672013000400009.
  • Guo, F., Y. Dong, Z. Lv, P. Fan, S. Yang, and L. Dong. 2015. Pyrolysis kinetics of biomass (herb residue) under isothermal condition in a micro fluidized bed. Energy Conversion and Management 93:367–76. doi:10.1016/j.enconman.2015.01.042.
  • Guo, Z. Y., L. X. Zhang, P. Wang, H. B. Liu, J. W. Jia, X. M. Fu, S. D. Li, X. G. Wang, L. Zhong, and X. Q. Shu. 2013. Study on kinetics of coal pyrolysis at different heating rates to produce hydrogen. Fuel Processing Technology 107:23–26. doi:10.1016/j.fuproc.2012.08.021.
  • Hu, J. H., Y. Q. Chen, K. Z. Qian, Z. X. Yang, H. P. Yang, L. Yang, and H. P. Chen. 2017. Evolution of char structure during mengdong coal pyrolysis: Influence of temperature and K2CO3. Fuel Process Technology 159:178–86. doi:10.1016/j.fuproc.2017.01.042.
  • İlkılıç, C., and H. Aydın. 2011. Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine. Fuel Processing Technology 92:1129–35. doi:10.1016/j.fuproc.2011.01.009.
  • Kasai, E., T. Kitajima, T. Akiyama, J. Yagi, and F. Saito. 1997. Rate of methane-steam reforming molten BF slag for heat recovery a chemical reaction on from molten the surface of slag by using a chemical reaction. ISIJ International 37:1031–36. doi:10.2355/isijinternational.37.1031.
  • Kumar, S., Z. H. Wang, Z. Kang, J. Xia, R. Whiddon, Y. He, J. Gul-e-Rana, Z. A. S. Bairq, and K. F. Cen. 2019. Influence of temperature and Ca(OH)2 on releasing tar and coal gas during lignite coal pyrolysis and char gasification. Chinese Journal of Chemical Engineering In Press. doi:10.1016/j.cjche.2019.05.013.
  • Li, B. F., X. H. Li, W. Y. Li, and J. Feng. 2017. Co-pyrolysis performance of coal and its direct coal liquefaction residue with solid heat carrier. Fuel Processing Technology 166:69–76. doi:10.1016/j.fuproc.2017.05.030.
  • Li, P., W. Lei, B. Wu, and Q. B. Yu. 2015. CO2 gasification rate analysis of coal in molten blast furnace slag-For heat recovery from molten slag by using a chemical reaction. International Journal of Hydrogen Energy 40:1607–15. doi:10.1016/j.ijhydene.2014.11.091.
  • Li, P., Q. B. Yu, Q. Qin, and W. Lei. 2012. Kinetics of CO2 coal gasification in molten blast furnace slag. Industrial & Engineering Chemistry Research 51 (49):15872–83. doi:10.1021/ie301678s.
  • Li, P., Q. B. Yu, Q. Qin, and J. X. Liu. 2011. Adaptability of coal gasification in molten blast furnace slag on coal samples and granularities. Energy & Fuels 25 (12):5678–82. doi:10.1021/ef201203t.
  • Li, P., Q. B. Yu, H. Q. Xie, Q. Qin, and K. Wang. 2013. CO2 gasification rate analysis of Datong coal using slag granules as heat carrier for heat recovery from blast furnace slag by using a chemical reaction. Energy & Fuels 27 (8):4810–17. doi:10.1021/ef4009554.
  • Li, W., N. Wang, and B. Li. 2002. Process analysis of catalytic multi-stage hydropyrolysis of lignite. Fuel 81:1491–97. doi:10.1016/S0016-2361(02)00095-9.
  • Luo, S. Y., C. J. Yi, and Y. M. Zhou. 2013. Bio-oil production by pyrolysis of biomass using hot blast furnace slag. Renewable Energy 50:373–77. doi:10.1016/j.renene.2012.07.008.
  • Luo, S. Y., Y. M. Zhou, and C. J. Yi. 2012. Hydrogen-rich gas production from biomass catalytic gasification using hot blast furnace slag as heat carrier and catalyst in moving bed reactor. International Journal of Hydrogen Energy 37:15081–85. doi:10.1016/j.ijhydene.2012.07.105.
  • Maruoka, N., T. Mizuochi, H. Purwanto, and T. Akiyama. 2004. Feasibility study for recovering waste heat in the steelmaking industry using a chemical recuperator. ISIJ International 44:257–62. doi:10.2355/isijinternational.44.257.
  • Murena, F., E. Garufi, and F. Gioia. 1996. Hydrogenative pyrolysis of waste tyres: Kinetic analysis. Journal of Hazardous Materials 50:143–56. doi:10.1016/0304-3894(96)01792-X.
  • Qian, W., K. D. Sun, Q. Xie, Q. W. Zhang, and Y. Y. Huang. 2012. Study of resolution capability of pyrolysis characteristic index of low-rank bituminous coal. Journal of China University of Mining & Technology 41 (2):256–61.
  • Qiu, S. X., S. F. Zhang, Q. Y. Zhang, G. B. QIu, and L. Y. Wen. 2017. Effects of iron compounds on pyrolysis behavior of coals and metallurgical properties of resultant cokes. Journal of Iron and Steel Research, International 24:1169–76. doi:10.1016/S1006-706X(18)30014-1.
  • Shatokha, V. I., and I. V. Sokolovskaya. 2012. Study on effect of coal treatment with blast furnace slag on char reactivity in air. Ironmaking and Steelmaking 39 (6):439–45. doi:10.1179/1743281211Y.0000000091.
  • Shatokha, V. I., and I. V. Sokolovskaya. 2013. Effect of coal treatment with molten blast furnace slag on char properties. Ironmaking and Steelmaking 40 (8):635–37. doi:10.1179/1743281212Y.0000000080.
  • Shimada, T., V. Kochura, T. Akiyama, E. Kasai, and J. Yagi. 2001. Effects of slag compositions on the rate of methane-steam reaction. ISIJ International 41:111–15. doi:10.2355/isijinternational.41.111.
  • Sun, Y. Q., J. Nakano, L. L. Liu, X. D. Wang, and Z. T. Zhang. 2015a. Achieving waste to energy through sewage sludge gasification using hot slags: Syngas production. Scientific Reports 5:11436–47. doi:10.1038/srep11436.
  • Sun, Y. Q., S. Sridhar, L. L. Liu, X. D. Wang, and Z. T. Zhang. 2015. Integration of coal gasification and waste heat recovery from high temperature steel slags: An emerging strategy to emission reduction. Scientific Reports 5 (1–3):131–39.
  • Sun, Y. Q., Z. T. Zhang, L. L. Liu, and X. D. Wang. 2015a. Two-stage high temperature sludge gasification using the waste heat from hot blast furnace slags. Bioresource Technology 198:364–71. doi:10.1016/j.biortech.2015.09.051.
  • Sun, Y. Q., Z. T. Zhang, L. L. Liu, and X. D. Wang. 2015b. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: Syngas production and sulfur dioxide fixation. Bioresource Technology 181:174–82. doi:10.1016/j.biortech.2015.01.061.
  • Sun, Y. Q., Z. T. Zhang, S. Seetharaman, L. L. Liu, and X. D. Wang. 2014. Characteristics of low temperature biomass gasification and syngas release behavior using hot slag. RSC Advances 107:62105–14. doi:10.1039/C4RA10261D.
  • Wu, J. J., H. Wang, X. Zhu, Q. Liao, and B. Ding. 2015. Centrifugal granulation performance of liquid with various for waste heat recovery of blast furnace slag. Applied Thermal Engineering 89:494–504. doi:10.1016/j.applthermaleng.2015.06.031.
  • Xie, X., L. Liu, D. Lin, Y. Zhao, and P. H. Qiu. 2019. Influence of different state alkali and alkaline earth on chemical structure of Zhundong coal char pyrolyzed at elevated pressures. Fuel 254:115691. doi:10.1016/j.fuel.2019.115691.
  • Xu, Y., Y. F. Zhang, G. J. Zhang, and Y. F. Guo. 2016. Low temperature pyrolysates distribution and kinetics of Zhaotong lignite. Energy Conversion and Management 114:11–19. doi:10.1016/j.enconman.2016.02.004.
  • Yoon, S. J., and J. G. Lee. 2012. Hydrogen-rich syngas production through coal and charcoal gasification using microwave steam and air plasma torch. International Journal of Hydrogen Energy 37:17093–100. doi:10.1016/j.ijhydene.2012.08.054.
  • Yuan, S. F., X. Qu, R. Zhang, and J. C. Bi. 2015. Effect of calcium additive on product yields in hydrogasification of nickel-loaded Chinese sub-bituminous coal. Fuel 147:133–40. doi:10.1016/j.fuel.2015.01.004.
  • Zellagui, S., C. Schönnenbeck, N. Zouaoui-Mahzoul, G. Leyssens, O. Authier, E. Thunin, L. Porcheron, and J. F. Brillhac. 2016. Pyrolysis of coal and woody biomass under N2 and CO2 atmospheres using a drop tube furnace-experimental study and kinetic modeling. Fuel Processing Technology 148:99–109. doi:10.1016/j.fuproc.2016.02.007.
  • Zhang, H., H. Wang, X. Zhu, Y. J. Qiu, K. Li, R. Chen, and Q. Liao. 2013. A review of waste heat recovery technologies towards molten slag in steel industry. Applied Energy 112:956–66. doi:10.1016/j.apenergy.2013.02.019.
  • Zhang, J., Y. Q. Xu, C. L. Han, and Z. Yan. 2000. Effect of macerals and other factors on char porosity. Journal of Fuel Chemistry and Technology 28 (6):513–17.
  • Zhang, J. B., L. Xiang, W. T. Xie, Q. Q. Hao, H. Y. Chen, and X. X. Ma. 2018a. K2CO3-promoted methane pyrolysis on nickel/coal-char hybrids. Journal of Analytical and Applied Pyrolysis 136:53–61. doi:10.1016/j.jaap.2018.11.001.
  • Zhang, Q., J. Xu, Y. J. Wang, A. Hasanbeigi, W. Zhang, H. Y. Lu, and M. Arens. 2018b. Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows. Applied Energy 209:251–65. doi:10.1016/j.apenergy.2017.10.084.
  • Zhang, Q., X. Y. Zhao, H. Y. Lu, T. J. Ni, and Y. Li. 2017. Waste energy recovery and energy efficiency improvement in Chinas iron and steel industry. Applied Energy 191:502–20. doi:10.1016/j.apenergy.2017.01.072.
  • Zhang, Y. Q., J. L. Zhu, X. H. Wang, X. W. Zhang, S. X. Zhou, and P. Liang. 2016. Simulation of large coal particles pyrolysis by circulating ash heat carrier toward the axial dimension of the moving bed. Fuel Process Technology 154:227–34. doi:10.1016/j.fuproc.2016.08.037.
  • Zhong, M., Y. Zhao, J. R. Zhai, L. J. Jin, H. Q. Hu, Z. Q. Bai, and W. Li. 2019. Effects of nickel additives with different anions on the structure and pyrolysis behavior of Hefeng coal. Fuel Processing Technology 193:273–81. doi:10.1016/j.fuproc.2019.05.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.