228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chromium, iron or zirconium oligomer cations pillared interlayered montmorillonite carrier supported MnOx for low-temperature selective catalytic reduction of NOx by NH3 in metallurgical sintering flue gas

, , , ORCID Icon, , & show all
Pages 2696-2706 | Received 07 Dec 2018, Accepted 24 Jul 2019, Published online: 13 Sep 2019

References

  • Bertinchamps, F., C. Gregoire, and E. M. Gaigneaux. 2006. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics - Part I: Identification of the optimal main active phases and supports. Applied Catalysis B-Environmental 66 (1–2):1–9. doi:10.1016/j.apcatb.2006.02.011.
  • Boningari, T., D. K. Pappas, P. R. Ettireddy, A. Kotrba, and P. G. Smirniotis. 2015. Influence of SiO2 on MiTiO2 (M = Cu, Mn, and Ce) formulations for low-temperature selective catalytic reduction of NOx with NH3: Surface properties and key components in relation to the activity of NOx reduction. Industrial & Engineering Chemistry Research 54 (8):2261–73. doi:10.1021/ie504709j.
  • Boningari, T., D. K. Pappas, and P. G. Smirniotis. 2018. Metal oxide-confined interweaved titania nanotubes M/TNT (M = Mn, Cu, Ce, Fe, V, Cr, and Co) for the selective catalytic reduction of NOx in the presence of excess oxygen. Journal of Catalysis 365:320–33. doi:10.1016/j.jcat.2018.07.010.
  • Chen, L., R. Li, Z. Li, F. Yuan, X. Niu, and Y. Zhu. 2017. Effect of Ni doping in NixMn1−xTi10 (x = 0.1–0.5) on activity and SO2 resistance for NH3-SCR of NO studied with in situ DRIFTS. Catalysis Science & Technology 7 (15):3243–57. doi:10.1039/c7cy00672a.
  • Chen, M., L. Qi, L. Fan, R. Zhou, and X. Zheng. 2008. Zirconium-pillared montmorillonite and their application in supported palladium catalysts for volatile organic compounds purification. Materials Letters 62 (21–22):3646–48. doi:10.1016/j.matlet.2008.04.017.
  • Cho, D. H., Y. G. Kim, M. J. Chung, and J. S. Chung. 1998. Preparation and characterization of magnesia-supported chromium catalysts for the fluorination of 1,1,1-trifluoro-2-chloroethane (HCFC-133a). Applied Catalysis B-Environmental 18 (3–4):251–61. doi:10.1016/S0926-3373(98)00044-7.
  • Eigenmann, F., M. Maciejewski, and A. Baiker. 2006. Selective reduction of NO by NH3 over manganese–Cerium mixed oxides: Relation between adsorption, redox and catalytic behavior. Applied Catalysis B: Environmental 62 (3–4):311–18. doi:10.1016/j.apcatb.2005.08.005.
  • Guerra, D. L., C. Airoldi, V. P. Lemos, and R. S. Angelica. 2008. Adsorptive, thermodynamic and kinetic performances of Al/Ti and Al/Zr-pillared clays from the Brazilian Amazon region for zinc cation removal. Journal of Hazardous Materials 155 (1–2):230–42. doi:10.1016/j.jhazmat.2007.11.054.
  • Han, J., X. He, L. Qin, W. Chen, and F. Yu. 2014. NOx removal coupled with energy recovery in sintering plant. Ironmaking & Steelmaking 41 (5):350–54. doi:10.1179/1743281213y.0000000158.
  • Heylen, I., N. Maes, P. Cool, M. De Bock, and E. F. Vansant. 1996. Theoretical evaluation of pillared clay adsorbents: Part IV: The microporosity of Fe- and mixed Fe-Zr-Pillared montmorillonite. Journal of Porous Materials 3 (4):217–25. doi:10.1007/bf01137910.
  • Kapteijn, F., L. Singoredjo, and A. Andreim. 1994. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental 3:173–89. doi:10.1016/0926-3373(93)E0034-9.
  • Kooli, F., Y. Liu, K. Hbaieb, and R. Al-Faze. 2016. Characterization and catalytic properties of porous clay heterosturctures from zirconium intercalated clay and its pillared derivatives. Microporous and Mesoporous Materials 226:482–92. doi:10.1016/j.micromeso.2016.02.025.
  • Leng, X., Z. Zhang, Y. Li, T. Zhang, S. Ma, F. Yuan, X. Niu, and Y. Zhu. 2018. Excellent low temperature NH3-SCR activity over MnaCe0.3TiOx (a = 0.1–0.3) oxides: Influence of Mn addition. Fuel Processing Technology 181:33–43. doi:10.1016/j.fuproc.2018.09.012.
  • Liu, F., H. He, Y. Ding, and C. Zhang. 2009. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental 93 (1–2):194–204. doi:10.1016/j.apcatb.2009.09.029.
  • Liu, J., X. Li, R. Li, Q. Zhao, J. Ke, H. Xiao, L. Wang, S. Liu, M. Tadé, and S. Wang. 2018. Facile synthesis of tube-shaped Mn-Ni-Ti solid solution and preferable Langmuir-Hinshelwood mechanism for selective catalytic reduction of NO by NH3. Applied Catalysis A: General 549:289–301. doi:10.1016/j.apcata.2017.10.010.
  • Long, R. Q., M. T. Chang, and R. T. Yang. 2001. Enhancement of activities by sulfation on Fe-exchanged TiO2 pillared clay for selective catalytic reduction of NO by ammonia. Applied Catalysis B: Environmental 33:97–107. doi:10.1016/S0926-3373(01)00173-4.
  • Meng, D., W. Zhan, Y. Guo, Y. Guo, L. Wang, and G. Lu. 2015. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: Promotional role of sm and its catalytic performance. ACS Catalysis 5 (10):5973–83. doi:10.1021/acscatal.5b00747.
  • Ministry of Ecology and Environment of the People`s Republic of China. 2015. China annual report on environmental statistics in 2015. China Environmental Science Press.
  • Ministry of Ecology and Environment of the People`s Republic of China. 2017a. The modification list of emission standard of air pollutants for sintering and pelletizing of iron and steel industry (GB-28662-2012). China Environmental Science Press.
  • Ministry of Ecology and Environment of the People`s Republic of China. 2017b. National environmental statistics bulletin in 2015. Ministry of Ecology and Environment of the People`s Republic of China.
  • Pappas, D. K., T. Boningari, P. Boolchand, and P. G. Smirniotis. 2016. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature Selective Catalytic Reduction (SCR) of NOx by NH3. Journal of Catalysis 334:1–13. doi:10.1016/j.jcat.2015.11.013.
  • Peña, D. A., B. S. Uphade, and P. G. Smirniotis. 2004. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3. Evaluation and characterization of first row transition metals. Journal of Catalysis 221 (2):421–31. doi:10.1016/j.jcat.2003.09.003.
  • Qi, G., R. T. Yang, and R. Chang. 2004. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B: Environmental 51 (2):93–106. doi:10.1016/j.apcatb.2004.01.023.
  • Qu, L., C. Li, G. Zeng, M. Zhang, M. Fu, J. Ma, F. Zhan, and D. Luo. 2014. Support modification for improving the performance of MnOx–CeOy/γ-Al2O3 in selective catalytic reduction of NO by NH3. Chemical Engineering Journal 242:76–85. doi:10.1016/j.cej.2013.12.076.
  • Smirniotis, P. G., D. A. Peña, and B. S. Uphade. 2001. Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2. Angewandte Chemie-International Edition 40 (13):2479–82. doi:10.1002/1521-3773(20010702)40:13<2479::aid-anie2479>3.0.co;2-7.
  • Thirupathi, B., and P. G. Smirniotis. 2011. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Applied Catalysis B: Environmental 110:195–206. doi:10.1016/j.apcatb.2011.09.001.
  • Timofeeva, M. N., S. T. Khankhasaeva, S. V. Badmaeva, A. L. Chuvilin, E. B. Burgina, A. B. Ayupov, V. N. Panchenko, and A. V. Kulikova. 2005. Synthesis, characterization and catalytic application for wet oxidation of phenol of iron-containing clays. Applied Catalysis B: Environmental 59 (3–4):243–48. doi:10.1016/j.apcatb.2005.01.013.
  • Volzone, C. 2001. Pillaring of different smectite members by chromium species (Cr-PILCs). Microporous and Mesoporous Materials 49:197–202. doi:10.1016/S1387-1811(01)00423-1.
  • Wang, T., Z. Wan, X. Yang, X. Zhang, X. Niu, and B. Sun. 2018. Promotional effect of iron modification on the catalytic properties of Mn-Fe/ZSM-5 catalysts in the fast SCR reaction. Fuel Processing Technology 169:112–21. doi:10.1016/j.fuproc.2017.09.029.
  • Yamanaka, S., and G. W. Brindley. 1979. High surface area solids obtained by reaction of montmorillonite with zirconyl chloride. Clays and Clay Minerals 27 (2):119–24. doi:10.1346/CCMN.1979.0270207.
  • Zuo, S., Q. Huang, J. Li, and R. Zhou. 2009. Promoting effect of Ce added to metal oxide supported on Al pillared clays for deep benzene oxidation. Applied Catalysis B: Environmental 91 (1–2):204–09. doi:10.1016/j.apcatb.2009.05.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.