504
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Synthesize and hygro-thermal performance analysis of novel APC-CaCl2 composite sorbent for low-grade heat recovery, storage, and utilization

& ORCID Icon
Pages 3011-3031 | Received 30 Jan 2019, Accepted 23 Jun 2019, Published online: 18 Sep 2019

References

  • Alva, G., L. Liu, X. Huang, and G. Fang. 2017. Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews 68:693–706. doi:10.1016/j.rser.2016.10.021.
  • Aydin, D., S. P. Casey, X. Chen, and S. Riffat. 2016. Novel “open-sorption pipe” reactor for solar thermal energy storage. Energy Conversion and Management 121:321–34. doi:10.1016/j.enconman.2016.05.045.
  • Aydin, D., S. P. Casey, X. Chen, and S. Riffat. 2018. Numerical and experimental analysis of a novel heat pump driven sorption storage heater. Applied Energy 211:954–74. doi:10.1016/j.apenergy.2017.11.102.
  • Aydin, D., S. P. Casey, and S. Riffat. 2015. The latest advancements on thermochemical heat storage systems. Renewable and Sustainable Energy Reviews 41:356–67. doi:10.1016/j.rser.2014.08.054.
  • Bales, C., P. Gantenbein, D. Jaenig, H. Kerskes, K. Summer, M. van Essen, and R. Weber. 2008. Laboratory tests of chemical reactions and prototype sorption storage units. A Report of IEA Solar Heating and Cooling programme-Task, 32.
  • Buker, M. S., B. Mempouo, and S. B. Riffat. 2014. Performance evaluation and techno-economic analysis of a novel building integrated PV/T roof collector: An experimental validation. Energy and Buildings 76:164–75. doi:10.1016/j.enbuild.2014.02.078.
  • Casey, S. P., D. Aydin, S. Riffat, and J. Elvins. 2015. Salt impregnated desiccant matrices for ‘open’thermochemical energy storage—Hygrothermal cyclic behaviour and energetic analysis by physical experimentation. Energy and Buildings 92:128–39. doi:10.1016/j.enbuild.2015.01.048.
  • Casey, S. P., J. Elvins, S. Riffat, and A. Robinson. 2014. Salt impregnated desiccant matrices for ‘open’thermochemical energy storage—Selection, synthesis and characterisation of candidate materials. Energy and Buildings 84:412–25. doi:10.1016/j.enbuild.2014.08.028.
  • Courbon, E., P. D’Ans, A. Permyakova, O. Skrylnyk, N. Steunou, M. Degrez, and M. Frère. 2017. Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications. Solar Energy 157:532–41. doi:10.1016/j.solener.2017.08.034.
  • D’Ans, P., O. Skrylnyk, W. Hohenauer, E. Courbon, L. Malet, M. Degrez, G. Descy, and M. Frère. 2018. Humidity dependence of transport properties of composite materials used for thermochemical heat storage and thermal transformer appliances. Journal of Energy Storage 18:160–70. doi:10.1016/j.est.2018.04.027.
  • Element Energy. 2014. The potential for recovering and using surplus heat from industry. London, UK: Final report for Department of Energy and Climate Change.
  • Gaeini, M., A. L. Rouws, J. W. O. Salari, H. A. Zondag, and C. C. M. Rindt. 2018. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage. Applied Energy 212:1165–77. doi:10.1016/j.apenergy.2017.12.131.
  • Gondre, D., K. Johannes, and F. Kuznik. 2014. Specification requirements for inter-seasonal heat storage systems in a low energy residential house. Energy Conversion and Management 77:628–36. doi:10.1016/j.enconman.2013.09.061.
  • Hauer, A., and E. L. avemann. 2007. Open absorption systems for air conditioning and thermal energy storage. In H. O. Paksoy (Eds.), Thermal energy storage for sustainable energy consumption, 429–44. Dordrecht: Springer.
  • Huang, F., J. Zheng, J. M. Baleynaud, and J. Lu. 2017. Heat recovery potentials and technologies in industrial zones. Journal of the Energy Institute 90 (6):951–61. doi:10.1016/j.joei.2016.07.012.
  • Jänchen, J., T. H. Herzog, K. Gleichmann, B. Unger, A. Brandt, G. Fischer, and H. Richter. 2015. Performance of an open thermal adsorption storage system with Linde type A zeolites: Beads versus honeycombs. Microporous and Mesoporous Materials 207:179–84. doi:10.1016/j.micromeso.2015.01.018.
  • Jarimi, H., D. Aydin, Y. Zhang, Y. Ding, X. Chen, A. Dodo, Z. Utlu, and S. Riffat. 2017. Materials characterization of innovative composite materials for solar-driven thermochemical heat storage (THS) suitable for building application. International Journal of Low-Carbon Technologies 13 (1):30–42.
  • Johannes, K., F. Kuznik, J.-L. Hubert, F. Durier, and C. Obrecht. 2015. Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings. Applied Energy 159:80–86. doi:10.1016/j.apenergy.2015.08.109.
  • Johnson, I., W. T. Choate, and A. Davidson. 2008. Waste heat recovery. Technology and opportunities in US industry. Laurel, MD (United States): BCS, Inc.
  • Katulić, S., M. Čehil, and Ž. Bogdan. 2014. A novel method for finding the optimal heat storage tank capacity for a cogeneration power plant. Applied Thermal Engineering 65 (1–2):530–38. doi:10.1016/j.applthermaleng.2014.01.051.
  • Krese, G., R. Koželj, V. Butala, and U. Stritih. 2018. Thermochemical seasonal solar energy storage for heating and cooling of buildings. Energy and Buildings 164:239–53. doi:10.1016/j.enbuild.2017.12.057.
  • Krönauer, A., E. Lävemann, S. Brückner, and A. Hauer. 2015. Mobile sorption heat storage in industrial waste heat recovery. Energy Procedia 73:272–80. doi:10.1016/j.egypro.2015.07.688.
  • Kuznik, F., D. Gondre, K. Johannes, C. Obrecht, and D. David. 2019. Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings. Renewable Energy 132:761–72. doi:10.1016/j.renene.2018.07.118.
  • Liu, H., K. Nagano, D. Sugiyama, J. Togawa, and M. Nakamura. 2013. Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat. International Journal of Heat and Mass Transfer 65:471–80. doi:10.1016/j.ijheatmasstransfer.2013.06.021.
  • Mehrabadi, A., and M. Farid. 2018. New salt hydrate composite for low-grade thermal energy storage. Energy 164:194–203. doi:10.1016/j.energy.2018.08.192.
  • Mette, B., H. Kerskes, and H. Drück. 2011, September. Process and reactor design for thermo-chemical energy stores. In ISES Solar World Congress, Kassel, Germany. doi: 10.18086/swc.2011.29.18. http://task42.iea-shc.org/Data/Sites/1/publications/Task42-Process_and_Reactor_Design_for_Thermo-Chemical_Energy_Stores.pdf
  • Michel, B., N. Mazet, and P. Neveu. 2016. Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution. Applied Energy 180:234–44. doi:10.1016/j.apenergy.2016.07.108.
  • Ozgen, F., M. Esen, and H. Esen. 2009. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans. Renewable Energy 34 (11):2391–98. doi:10.1016/j.renene.2009.03.029.
  • Shere, L., S. Trivedi, S. Roberts, A. Sciacovelli, and Y. Ding. 2019. Synthesis and characterization of thermochemical storage material combining porous zeolite and inorganic salts. Heat Transfer Engineering 40:1176–1181.
  • Tatsidjodoung, P., N. Le Pierrès, J. Heintz, D. Lagre, L. Luo, and F. Durier. 2016. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings. Energy Conversion and Management 108:488–500. doi:10.1016/j.enconman.2015.11.011.
  • van Alebeek, R., L. Scapino, M. A. J. M. Beving, M. Gaeini, C. C. M. Rindt, and H. A. Zondag. 2018. Investigation of a household-scale open sorption energy storage system based on the Zeolite 13X/water reacting pair. Applied Thermal Engineering 139:325–33. doi:10.1016/j.applthermaleng.2018.04.092.
  • Worldwatch Institute. 2009. State of the world 2009: Confronting climate change. London: Earthscan Publishing. ( ISBN-13: 978-1844076949)
  • Xu, C., Z. Yu, Y. Xie, Y. Ren, F. Ye, and X. Ju. 2018a. Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage. Applied Thermal Engineering 129:250–59. doi:10.1016/j.applthermaleng.2017.10.031.
  • Xu, S. Z., R. Z. Wang, L. W. Wang, and J. Zhu. 2018b. A zeolite 13X/magnesium sulfate–Water sorption thermal energy storage device for domestic heating. Energy Conversion and Management 171:98–109. doi:10.1016/j.enconman.2018.05.077.
  • Zettl, B., G. Englmair, and G. Steinmaurer. 2014. Development of a revolving drum reactor for open-sorption heat storage processes. Applied Thermal Engineering 70 (1):42–49. doi:10.1016/j.applthermaleng.2014.04.069.
  • Zhang, X., M. Li, W. Shi, B. Wang, and X. Li. 2014. Experimental investigation on charging and discharging performance of absorption thermal energy storage system. Energy Conversion and Management 85:425–34. doi:10.1016/j.enconman.2014.05.100.
  • Zhang, Y. N., R. Z. Wang, and T. X. Li. 2017. Experimental investigation on an open sorption thermal storage system for space heating. Energy 141:2421–33. doi:10.1016/j.energy.2017.12.003.
  • Zondag, H., B. Kikkert, S. Smeding, R. D. Boer, and M. Bakker. 2013. Prototype thermochemical heat storage with open reactor system. Applied Energy 109:360–65. doi:10.1016/j.apenergy.2013.01.082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.