361
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Adsorption behavior of alcohol vapors on Zonguldak-Karadon coal derived porous carbons

& ORCID Icon
Pages 2881-2902 | Received 17 Jun 2019, Accepted 29 Aug 2019, Published online: 18 Sep 2019

References

  • Ahmadpour, A., and D. D. Do. 1997. The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon 35:1723–32. doi:10.1016/S0008-6223(97)00127-9.
  • Alcañiz-Monge, J., and M. J. Illán-Gómez. 2008. Insight into hydroxides-activated coals: Chemical or physical activation? Journal of Colloid and Interface Science 318:35–41. doi:10.1016/j.jcis.2007.10.017.
  • Baei, M. T., A. Soltani, P. Torabi, and S. Hashemian. 2015. Al12N12 nanocage as potential adsorbent for removal of acetone from environmental systems. Monatsh Chem 146:891–96. doi:10.1007/s00706-014-1365-8.
  • Basar, C. A. 2006. Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. Journal of Hazardous Materials 135:232–41. doi:10.1016/j.jhazmat.2005.11.055.
  • Baytar, O., Ö. Şahin, C. Saka, and S. Ağrak. 2018. Characterization of microwave and conventional heating on the pyrolysis of pistachio shells for the adsorption of methylene blue and iodine. Analytical Letters 51 (4):2205–20. doi:10.1080/00032719.2017.1415920.
  • Bozgeyik, K., and T. Kopac. 2010. Adsorption of bovine serum albumin onto metal oxides: Adsorption equilibrium and kinetics onto alumina and zirconia. International Journal of Chemical Reactor Engineering 8 (139):1–24. doi:10.2202/1542-6580.2336.
  • Bozgeyik, K., and T. Kopac. 2016. Adsorption properties of arc produced multi walled carbon nanotubes for bovine serum albumin. International Journal of Chemical Reactor Engineering 14 (2):549–58. doi:10.1515/ijcre-2015-0160.
  • Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60:309–19. doi:10.1021/ja01269a023.
  • Carrott, P. J. M., I. P. P. Cansado, P. A. M. Mourão, M. M. L. Ribeiro Carrott, N. D. B. Louro, A. Albiniak, E. Broniek, and M. Jasieńko-Hałat. 2012. On the use of ethanol for evaluating microporosity of activated carbons prepared from Polish lignite. Fuel Processing Technology 103:34–38. doi:10.1016/j.fuproc.2011.07.016.
  • Cuhadaroglu, D., and O. A. Uygun. 2008. Production and characterization of activated carbon from a bituminous coal by chemical activation. African Journal of Biotechnology 7 (20):3703–10.
  • Dubinin, M. M., and L. V. Radushkevitch. 1947. The equation of the characteristic curve of activated charcoal. Proceedings of the USSR Academy of Sciences 55:331–33.
  • Erdogan, F. O. 2016. Characterization of the activated carbon surface of cherry stones prepared by sodium and potassium hydroxide. Analytical Letters 49 (7):1079–90. doi:10.1080/00032719.2015.1065879.
  • Erdogan, F. O., and T. Kopac. 2007. Dynamic analysis of sorption of hydrogen in activated carbon. International Journal of Hydrogen Energy 32:3448–56. doi:10.1016/j.ijhydene.2007.02.009.
  • Erdogan, F. O., and T. Kopac. 2019. Highly effective activated carbons from Turkish-Kozlu bituminous coal by physical and KOH activation and sorption studies with organic vapors. International Journal of Chemical Reactor Engineering 17 (5). doi:10.1515/ijcre-2018-0071.
  • Erdogan, T., and F. O. Erdogan. 2016. Characterization of the adsorption of disperse yellow 211 on activated carbon from cherry stones following microwave-assisted phosphoric acid treatment. Analytical Letters 49 (7):917–28. doi:10.1080/00032719.2015.1086776.
  • Fathy, N. A., S. A. S. Ahmed, and R. M. M. A. El-enin. 2012. Effect of activation temperature on textural and adsorptive properties for activated carbon derived from local reed biomass: Removal of p-nitrophenol. Environmental Research, Engineering and Management 59 (1):10–22. doi:10.5755/j01.erem.59.1.961.
  • Fathy, N. A., B. S. Girgis, L. B. Khalil, and J. Y. Farah. 2010. Utilization of cotton stalks-biomass waste in the production of carbon adsorbents by KOH activation for removal of dye-contaminated water. Carbon Letters 11:224–34. doi:10.5714/CL.2010.11.3.224.
  • Freundlich, H. 1909. Kapillarchemie: Eine darstellung der chemie der kolloide und verwandter gebiete, akademische verlagsgesellschaf. Leipzig.
  • Fuertes, A. B., G. Marbán, and D. M. Nevskaia. 2003. Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths. Carbon 41:87–96. doi:10.1016/S0008-6223(02)00274-9.
  • Girgis, B. S., A. A. Attia, and N. A. Fathy. 2007. Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases. Colloids and Surfaces A: Physicochemical and Engineering Aspects 299:79–87. doi:10.1016/j.colsurfa.2006.11.024.
  • Girgis, B. S., A. M. Soliman, and N. A. Fathy. 2011. Development of micro-mesoporous carbons from several seed hulls under varying conditions of activation. Microporous and Mesoporous Materials 142:518–25. doi:10.1016/j.micromeso.2010.12.044.
  • Gregg, S. J., and K. S. W. Sing. 1982. Adsorption, surface area and porosity, 195–288. 2nd ed. London: Academic Press.
  • Guo, C., and R. A. Gemeinhart. 2008. Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles. European Journal of Pharmaceutics and Biopharmaceutics 70:597–604. doi:10.1016/j.ejpb.2008.06.008.
  • Harkins, W., and G. Jura. 1944. Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. Journal of the American Chemical Society 66:1366–73. doi:10.1021/ja01236a048.
  • He, X., Y. Geng, J. Qiu, M. Zheng, S. Long, and X. Zhang. 2010. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors. Carbon 48:1662–69. doi:10.1016/j.carbon.2010.01.016.
  • Henderson, S. M. 1952. A basic concept of equilibrium moisture. Agricultural Engineering 33:29–32.
  • Hsu, L. Y., and H. Teng. 2000. Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Processing Technology 64:155–66. doi:10.1016/S0378-3820(00)00071-0.
  • Hsu, S. C., and C. Lu. 2007. Modification of single-walled carbon nanotubes for enhancing isopropyl alcohol vapor adsorption from air streams. Separation Science and Technology 42:2751–66. doi:10.1080/01496390701515060.
  • Hsu, S. C., and C. Lu. 2009. Adsorption kinetic, thermodynamic, and desorption studies of isopropyl alcohol vapor by oxidized single-walled carbon nanotubes. Journal of Air & Waste Management Association 59:990–97. doi:10.3155/1047-3289.59.8.990.
  • Karaca, S., A. Gurses, and R. Bayrak. 2005. Investigation of applicability of the various adsorption models of methylene blue adsorption onto lignite/water interface. Energy Conversion and Management 46:33–46. doi:10.1016/j.enconman.2004.02.008.
  • Kopac, T., and K. Bozgeyik. 2016. Equilibrium, kinetics, and thermodynamics of bovine serum albumin adsorption on single-walled carbon nanotubes. Chemical Engineering Communications 203 (9):1198–206. doi:10.1080/00986445.2016.1160225.
  • Kopac, T., K. Bozgeyik, and E. Flahaut. 2018. Adsorption and interactions of the bovine serum albumin-double walled carbon nanotube system. Journal of Molecular Liquids (252):1–8. doi:10.1016/j.molliq.2017.12.100.
  • Kopac, T., and F. O. Erdogan. 2009. Temperature and alkaline hydroxide treatment effects on hydrogen sorption characteristics of multi-walled carbon nanotube–Graphite mixture. Journal of Industrial and Engineering Chemistry 15:730–35. doi:10.1016/j.jiec.2009.09.054.
  • Kopac, T., and T. Karaaslan. 2007. H2H2, He and Ar sorption on arc-produced cathode deposit consisting of multiwalled carbon nanotubes—graphitic and diamond-like carbon. International Journal of Hydrogen Energy 32:3990–97. doi:10.1016/j.ijhydene.2007.03.032.
  • Kopac, T., and Y. Kırca. 2019. Effect of ammonia and boron modifications on the surface and hydrogen sorption characteristics of activated carbons from coal. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2019.07.125.
  • Kopac, T., Y. Kırca, and A. Toprak. 2017. Synthesis and characterization of KOH/boron modified activated carbons from coal and their hydrogen sorption characteristics. International Journal of Hydrogen Energy 42:23606–16. doi:10.1016/j.ijhydene.2017.01.195.
  • Kopac, T., and S. Kocabaş. 2002. Adsorption equilibrium and breakthrough analysis for sulfur dioxide adsorption on silica gel. Chemical Engineering and Processing 41 (3):223–30. doi:10.1016/S0255-2701(01)00137-4.
  • Kopac, T., and S. Kocabaş. 2003. Sulfur dioxide adsorption isotherms and breakthrough analysis on molecular sieve 5A zeolite. Chemical Engineering Communications 190:1041–54. doi:10.1080/00986440302103.
  • Kopac, T., and E. Sulu. 2019. Comparison of the adsorption behavior of basic red 46 textile dye on various activated carbons obtained from Zonguldak coal. Journal of the Faculty of Engineering and Architecture of Gazi University 34 (3):1227–40.
  • Kopac, T., E. Sulu, and A. Toprak. 2016. Effect of KOH treatment on bituminous coal for the effective removal of basic blue 41 dye from aqueous solutions. Desalination and Water Treatment 57:29007–18. doi:10.1080/19443994.2016.1186571.
  • Kopac, T., and A. Toprak. 2007. Preparation of activated carbons from Zonguldak region coals by physical and chemical activations for hydrogen sorption. International Journal of Hydrogen Energy 32:5005–14. doi:10.1016/j.ijhydene.2007.08.002.
  • Kopac, T., and A. Toprak. 2009. Hydrogen sorption characteristics of Zonguldak region coal activated by physical and chemical methods. Korean Journal of Chemical Engineering 26:1700–05. doi:10.1007/s11814-009-0250-3.
  • Langmuir, I. 1916. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society 38:2221–95. doi:10.1021/ja02268a002.
  • Li, L., L. Tang, X. Liang, Z. Liu, and Y. Yang. 2016. Adsorption performance of acetone on activated carbon modified by microwave heating and alkali treatment. Journal of Chemical Engineering of Japan 49 (11):958–66. doi:10.1252/jcej.15we333.
  • Lillo-Ródenas, M. A., D. Cazorla-Amorós, and A. Linares-Solano. 2003. Understanding chemical reactions between carbons and NaOH and KOH. Carbon 41 (2):267–75. doi:10.1016/S0008-6223(02)00279-8.
  • Lillo-Ródenas, M. A., J. Juan-Juan, D. Cazorla-Amorós, and A. Linares-Solano. 2004. About reactions occurring during chemical activation with hydroxides. Carbon 42 (7):1371–75. doi:10.1016/j.carbon.2004.01.008.
  • Lin, S. H. 2004. Recovery of isopropyl alcohol from waste solvent of a semiconductor plant. Journal of Hazardous Materials 106:161–68. doi:10.1016/j.jhazmat.2003.11.012.
  • Linares-Solano, A., D. Lozano-Castelló, M. A. Lillo-Ródenas, and D. Cazorla-Amorós. 2008. Carbon activation by alkaline hydroxides preparation and reactions, porosity and performance. Chemistry and Physics of Carbon 30:1–62.
  • Lozano-Castelló, D., M. A. Lillo-Ródenas, D. Cazorla-Amorós, and A. Linares-Solano. 2001. Preparation of activated carbons from Spanish anthracite. Carbon 39 (5):741–49. doi:10.1016/S0008-6223(00)00185-8.
  • Mao, H., R. Huang, Z. Hashisho, S. Wang, H. Chen, H. Wang, and D. Zhou. 2016. Adsorption of toluene and acetone vapors on microwave-prepared activated carbon from agricultural residues: Isotherms, kinetics, and thermodynamics studies. Research on Chemical Intermediates 42:3359–71. doi:10.1007/s11164-015-2217-9.
  • Mao, H., D. Zhou, Z. Hashisho, S. Wang, H. Chen, H. Wang, and M. J. Lashaki. 2015. Microporous activated carbon from pinewood and wheat straw by microwave-assisted KOH treatment for the adsorption of toluene and acetone vapors. RSC Advances 5:36051–58. doi:10.1039/C5RA01320H.
  • Qian, Q., M. Machida, and H. Tatsumoto. 2008. Textural and surface chemical characteristics of activated carbons prepared from cattle manure compost. Waste Management 28:1064–71. doi:10.1016/j.wasman.2007.03.029.
  • Rintramee, K., K. Föttinger, G. Rupprechter, and J. Wittayakun. 2012. Ethanol adsorption and oxidation on bimetallic catalysts containing platinum and base metal oxide supported on MCM-41. Applied Catalysis B: Environmental 115–116:225–35. doi:10.1016/j.apcatb.2011.11.050.
  • Romero-Anaya, A. J., M. A. Lillo-Ródenas, and A. Linares-Solano. 2015. Factors governing the adsorption of ethanol on spherical activated carbons. Carbon 83:240–49. doi:10.1016/j.carbon.2014.10.092.
  • Rosen, M. J. 1978. Surfactants and Interfacial Phenomena. New York: Wiley.
  • Şahin, Ö., M. Kaya, and C. Saka. 2018. Preparation and characterization of small pore carbon molecular sieves by chemical vapor deposition of pistachio shells. Analytical Letters 51 (15):2429–40. doi:10.1080/00032719.2018.1432630.
  • Saraf, S., and V. Vaidya. 2016. Elucidation of sorption mechanism of R. arrhizus for reactive blue 222 using equilibrium and kinetic studies. Journal of Microbial & Biochemical Technology 8 (3):236–46. doi:10.4172/1948-5948.1000292.
  • Sharif, Y. M., C. Saka, O. Baytar, and Ö. Şahin. 2018. Preparation and characterization of activated carbon from sesame seed shells by microwave and conventional heating with zinc chloride activation. Analytical Letters 51 (17):2733–46. doi:10.1080/00032719.2018.1450415.
  • Shiau, C. H., K. L. Pan, S. J. Yu, S. Y. Yan, and M. B. Chang. 2017. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma. Environmental Technology 38 (18):2314–23. doi:10.1080/09593330.2016.1259354.
  • Sing, K. S. W., and R. T. Williams. 2004. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science & Technology 22:773–82. doi:10.1260/0263617053499032.
  • Sricharoenchaikul, V., C. Pechyen, D. Aht-ong, and D. Atong. 2008. Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy&Fuels 22:31–37.
  • Tang, L., L. Li, R. Chen, C. Wang, W. Ma, and X. Ma. 2016. Adsorption of acetone and isopropanol on organic acid modified activated carbons. Journal of Environmental Chemical Engineering 4:2045–51. doi:10.1016/j.jece.2016.03.031.
  • Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87 (9–10):1051–69. doi:10.1515/pac-2014-1117.
  • Toprak, A., and T. Kopac. 2011. Surface and hydrogen sorption characteristics of various activated carbons developed from rat coal mine (Zonguldak) and anthracite. Chinese Journal of Chemical Engineering 19:931–37. doi:10.1016/S1004-9541(11)60074-8.
  • Toprak, A., and T. Kopac. 2017. Carbon dioxide adsorption using high surface area activated carbons from local coals modified by KOH, NaOH and ZnCl2 agents. International Journal of Chemical Reactor Engineering 15. doi:10.1515/ijcre-2016-0042.
  • Wang, X., B. Yuan, X. Zhou, Q. Xia, Y. Li, D. An, and Z. Li. 2017. Novel glucose-based adsorbents (Glc-Cs) with high CO2 capacity and excellent CO2/CH4/N2 adsorption selectivity. Chemical Engineering Journal 327:51–59. doi:10.1016/j.cej.2017.06.074.
  • Xia, H., J. Wu, C. Srinivasakannan, J. Peng, and L. Zhang. 2017. Effect of activating agent on the preparation of bamboo-based high surface area activated carbon by microwave heating. High Temperature Materials and Processes 34 (7):667–74.
  • Zhang, X., B. Gao, Y. Zheng, X. Hu, A. E. Creamer, M. D. Annable, and Y. Li. 2017. Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms. Bioresource Technology 245:606–14. doi:10.1016/j.biortech.2017.09.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.