158
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Cathodic hydrogen recovery using Y zeolites loaded nickel(II) Oxide instead of Pt/C in microbial electrolysis cell

, , , , &
Pages 3453-3463 | Received 22 Jan 2019, Accepted 17 Jun 2019, Published online: 17 Sep 2019

References

  • Anis, S. F., and R. Hashaikeh. 2018. Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts. Journal of Nanoparticle Research 20:47–58. doi:10.1007/s11051-018-4153-2.
  • Bao, J., X. Zhang, B. Fan, J. J. Zhang, M. Zhou, W. L. Yang, X. Hu, H. Wang, B. Pan, and Y. Xie. 2015. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angewandte Chemie 127:7507–12. doi:10.1002/ange.201502226.
  • Call, D. F., M. D. Merrill, and B. E. Logan. 2009. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environmental Science & Technology 43:2179–83. doi:10.1021/es803074x.
  • Chen, Y., B. Lin, W. Yu, W. L. Yu, Y. Yang, S. M. Bashir, H. Wang, K. Takanabe, H. Idriss, and J. M. Basset. 2015. Frontispiece: Surface functionalization of g‐C3N4: Molecular‐level design of noble‐metal‐free hydrogen evolution photocatalysts. Chemistry 21:10290–95. doi:10.1002/chem.201582961.
  • Dai, H. Y., H. M. Yang, X. Liu, X. Jian, and Z. H. Liang. 2016. Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell. Fuel 174:251–56. doi:10.1016/j.fuel.2016.02.013.
  • Dai, H. Y., H. M. Yang, X. Liu, X. Jian, and Z. H. Liang. 2018. Preparation and electrochemical evaluation of MoS2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell. Chemical Journal of Chinese Universities 39:351–58. doi:10.7503/cjcu20170255.
  • Du, J., X. L. Wang, C. Li, X. Y. Liu, L. Gu, and H. P. Liang. 2018. Hollow Rh nanoparticles with nanoporous shell as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta 282:853–59. doi:10.1016/j.electacta.2018.06.126.
  • Eftekhari, A. 2017. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy 42:11053–77. doi:10.1016/j.ijhydene.2017.02.125.
  • Fox, M. A., and T. L. Pettit. 1989. Photoactivity of zeolite-supported cadmium sulfide: Hydrogen evolution in the presence of sacrificial donors. Langmuir 5:1056–61. doi:10.1021/la00088a032.
  • Jafary, T., R. W. D. Wan, M. Ghasemi, M. H. A. Bakar, M. Sedighi, B. H. Kim, A. A. C. Martinez, and J. M. Jahim. 2018. Clean hydrogen production in a full biological microbial electrolysis cell. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2018.01.010.
  • Jeon, J., B. D. Yu, and S. Hyun. 2015. Adsorption properties of transition metal atoms on strongly correlated NiO(001) surfaces with surface oxygen vacancies. Current Applied Physics 15:679–82. doi:10.1016/j.cap.2015.03.003.
  • Ji, D., H. Liu, X. Wang, H. T. Liu, X. H. Gao, C. Y. Xu, and S. Y. Wei. 2017. Mesostructured Y zeolite from NaY with low Si/Al by one-step method based on bifunctional surfactant. Materials Chemistry and Physics 196:284–87. doi:10.1016/j.matchemphys.2017.04.059.
  • Kadier, A., Y. Simayi, P. Abdeshahian, N. F. Azman, K. Chandrasekhar, and M. S. Kalil. 2016. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Engineering Journal 55:427–43. doi:10.1016/j.aej.2015.10.008.
  • Kadier, A., Y. Simayi, M. S. Kalil, P. Abdeshahian, and A. A. Hamid. 2014. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renewable Energy 71:466–72. doi:10.1016/j.renene.2014.05.052.
  • Kumar, G., and C. Y. Lin. 2014. Biogenic hydrogen conversion of de-oiled Jatropha waste (DJW) via anaerobic sequencing batch reactor operation: Process performance, microbial insights and CO2 reduction efficiency. The Scientific World Journal 2014:1–9. doi:10.1155/2014/946503.
  • Lee, H. S., W. F. Vermaas, and B. E. Rittmann. 2010. Biological hydrogen production: Prospects and challenges. Trends in Biotechnology 28:262–71. doi:10.1016/j.tibtech.2010.01.007.
  • Li, Z. C., J. J. Ma, Y. Zhou, Z. M. Yin, Y. B. Tang, and Y. X. Ma. 2018. Synthesis of sulfur-rich MoS2 nanoflowers for enhanced hydrogen evolution reaction performance. Electrochimica Acta 283:306–12. doi:10.1016/j.electacta.2018.06.135.
  • Lin, C. Y., C. H. Lay, C. Y. Chu, B. Sen, G. Kumar, and C. C. Chen. 2012. Fermentative hydrogen production from wastewaters: A review and prognosis. International Journal of Hydrogen Energy 37:15632–42. doi:10.1016/j.ijhydene.2012.02.072.
  • Logan, B. E., D. Call, S. Cheng, H. V. M. Hamelers, T. J. A. Sleutels, A. Jermiasse, and R. Rozendal. 2008. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environmental Science & Technology 42:8630–40. doi:10.1021/es801553z.
  • Molaei, R., R. Bayati, and J. Narayan. 2013. Crystallographic characteristics and p-Type to n-Type transition in epitaxial NiO thin film. Crystal Growth & Design 13:5459–65. doi:10.1021/cg401408f.
  • Rozenfeld, S., H. Teller, M. Schechter, R. Farber, O. Krichevski, A. Schechter, and R. Cahan. 2018. Exfoliated molybdenum di-sulfide (MoS2) electrode for hydrogen production in microbial electrolysis cell. Bioelectrochemistry 123:201–10. doi:10.1016/j.bioelechem.2018.05.007.
  • Schlapbach, L., and A. Zűttel. 2001. Hydrogen-storage materials for mobile applications. Nature 414 (6861):353–58. doi:10.1038/35104634.
  • Selembo, P. A., M. D. Merrill, and B. E. Logan. 2009. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. Journal of Power Sources 2009 (190):271–78. doi:10.1016/j.jpowsour.2008.12.144.
  • Tartakovsky, B., M. F. Manuel, V. Neburchilov, H. Wang, and S. R. Guiot. 2008. Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode. Journal of Power Sources 182:291–97. doi:10.1016/j.jpowsour.2008.03.062.
  • Wang, A., W. Liu, S. A. Cheng, D. F. Xing, J. Z. Zhou, and B. E. Logan. 2009. Source of methane and methods to control its formation in single chamber microbial electrolysis cells. International Journal of Hydrogen Energy 34:3653–58. doi:10.1016/j.ijhydene.2009.03.005.
  • Wang, B., X. Q. Wang, B. J. ZhengB, Y. F. Qi, W. L. Zhang, Y. R. Li, and Y. F. Chen. 2017a. NiSe2 nanoparticles embedded in CNT networks: Scalable synthesis and superior electrocatalytic activity for the hydrogen evolution reaction. Electrochemistry Communications 83:51–55. doi:10.1016/j.elecom.2017.08.022.
  • Wang, J., F. Xu, H. Y. Jin, Y. Q. Chen, and Y. Wang. 2017b. Non‐noble metal‐based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Advanced Materials 29:1–35. doi:10.1002/adma.201605838.
  • Wu, D., Y. Pan, L. Huang, P. Zhou, X. Quan, and H. Chen. 2015. Complete separation of Cu(II), Co(II) and Li(I) using self-driven MFCs-MECs with stainless steel mesh cathodes under continuous flow conditions. Separation and Purification Technology 2015 (147):114–24. doi:10.1016/j.seppur.2015.04.016.
  • Xiao, L., Z. Wen, S. Ci, J. H. Chen, and Z. He. 2012. Carbon/iron-based nanorod catalysts for hydrogen production in microbial electrolysis cells. Nano Energy 1:751–56. doi:10.1016/j.nanoen.2012.06.002.
  • Zhang, Y., L. Yu, D. Wu, L. Huang, P. Zhou, X. Quan, and G. Chen. 2015. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells. Journal of Power Sources 273:1103–13. doi:10.1016/j.jpowsour.2014.09.126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.