604
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Dynamic reliability assessment of flare systems by combining fault tree analysis and Bayesian networks

ORCID Icon, ORCID Icon &
Pages 4305-4322 | Received 23 May 2019, Accepted 23 Jul 2019, Published online: 24 Sep 2019

References

  • Abbassi, R., J. Bhandari, F. Khan, V. Garaniya, and S. Chai. 2016. Developing a quantitative risk-based methodology for maintenance scheduling using bayesian network. Chemical Engineering Transactions 48:235–40.
  • Akeredolu, F., and J. Sonibare. 2004. A review of the usefulness of gas flares in air pollution control. Management of Environmental Quality: an International Journal 15 (6):574–83. doi:10.1108/14777830410560674.
  • Anejionu, O. C., G. A. Blackburn, and J. D. Whyatt. 2015. Detecting gas flares and estimating flaring volumes at individual flow stations using MODIS data. Remote Sensing of Environment 158:81–94. doi:10.1016/j.rse.2014.11.018.
  • Ashrafi, M., and S. A. Zadeh. 2017. Lifecycle risk assessment of a technological system using dynamic Bayesian networks. Quality and Reliability Engineering International 33 (8):2497–520. doi:10.1002/qre.v33.8.
  • Baksh, -A.-A., F. Khan, V. Gadag, and R. Ferdous. 2015. Network based approach for predictive accident modelling. Safety Science 80:274–87. doi:10.1016/j.ssci.2015.08.003.
  • Barua, S., X. Gao, H. Pasman, and M. S. Mannan. 2016. Bayesian network based dynamic operational risk assessment. Journal of Loss Prevention in the Process Industries 41:399–410. doi:10.1016/j.jlp.2015.11.024.
  • Baukal, C. E., Jr. 2012. The John Zink Hamworthy Combustion Handbook: Volume 1-Fundamentals. Boca Raton, Florida: CRC press.
  • Berrouane, M. T., and Z. Lounis. 2016. Safety assessment of flare system by fault tree analysis. Journal of Chemical Technology and Metallurgy 51 (2):229–34.
  • Bhangu, N. S., G. Pahuja, and R. Singh. 2015. Application of fault tree analysis for evaluating reliability and risk assessment of a thermal power plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (18):2004–12. doi:10.1080/15567036.2012.664608.
  • Bobbio, A., L. Portinale, M. Minichino, and E. Ciancamerla. March 2001. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. Reliability Engineering & System Safety 71(3):249–60. doi:10.1016/S0951-8320(00)00077-6.
  • Boudali, H., and J. B. Dugan. 2005. A discrete-time Bayesian network reliability modeling and analysis framework. Reliability Engineering and System Safety 87 (3):337–49. doi:10.1016/j.ress.2004.06.004.
  • Boudali, H., and J. B. Dugan. 2006. A continuous-time Bayesian network reliability modeling, and analysis framework. IEEE Transaction on Reliability 55 (1):86–97. doi:10.1109/TR.2005.859228.
  • BP. 2017. BP Statistical review of world energy. Technical Report, 1–52.
  • Deyab, S. M., M. Taleb-berrouane, F. Khan, and M. Yang. 2018. Failure analysis of the offshore process component considering causation dependence. Process Safety and Environmental Protection 113:220–32. doi:10.1016/j.psep.2017.10.010.
  • Doguc, O., and J. E. Ramirez-Marquez. February 2009. A generic method for estimating system reliability using Bayesian networks. Reliability Engineering & System Safety 94(2):542–50. doi:10.1016/j.ress.2008.06.009.
  • Esary, J. D., and F. Proschan. 1963. Coherent structures of non-identical components. Technometrics 5 (2):191–209. doi:10.1080/00401706.1963.10490075.
  • Fawole, O., X. Cai, and A. MacKenzie. 2016. Gas flaring and resultant air pollution: A review focusing on black carbon. Environmental Pollution 216:182–97. doi:10.1016/j.envpol.2016.05.075.
  • Ferdous, R., F. Khan, B. Veitch, and P. R. Amyotte. July 2009. Methodology for computer aided fuzzy fault tree analysis. Process Safety and Environmental Protection 87(4):217–26. doi:10.1016/j.psep.2009.04.004.
  • García-Herrero, S., M. A. Mariscal, J. M. Gutiérrez, and A. Toca-Otero. 2013. Bayesian network analysis of safety culture and organizational culture in a nuclear power plant. Safety Science 53:82–95. doi:10.1016/j.ssci.2012.09.004.
  • Halloul, Y., S. Chiban, and A. Awad. 2019. Adapted fuzzy fault tree analysis for oil storage tank fire. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (8):948–58. doi:10.1080/15567036.2018.1522393.
  • Hänninen, M., O. A. Valdez Banda, and P. Kujala. 2014. Bayesian network model of maritime safety management. Expert Systems with Applications 41 (17):7837–46. doi:10.1016/j.eswa.2014.06.029.
  • Hassan, A., and R. Kouhy. June 2013. Gas flaring in Nigeria: Analysis of changes in its consequent carbon emission and reporting. Accounting Forum 37(2):124–34. doi:10.1016/j.accfor.2013.04.004.
  • Henley, E., and H. Kumamoto. 1981. Reliability engineering and risk assessment. Englewood Cliffs (NJ): Prentice-Hall.
  • IEA. 2016. Key world energy statistics. Technical Report, 1–80.
  • Iesmantas, T., and R. Alzbutas. 2016. Bayesian reliability of gas network under varying incident registration criteria. Quality and Reliability Engineering International 32 (5):1903–12. doi:10.1002/qre.v32.5.
  • Ismail, O. S., and G. E. Umukoro. 2012. Global impact of gas flaring. Energy and Power Engineering 04 (July):290–302. doi:10.4236/epe.2012.44039.
  • Ismail, O. S., and G. E. Umukoro. July 2016. Modelling combustion reactions for gas flaring and its resulting emissions. Journal of King Saud University - Engineering Sciences 28(2):130–40. doi:10.1016/j.jksues.2014.02.003.
  • Kabir, S. 2017. An overview of Fault tree analysis and its application in model based dependability analysis. Expert Systems with Applications 77:114–35. doi:10.1016/j.eswa.2017.01.058.
  • Kabir, S., E. Edifor, M. Walker, and N. Gordon. 2014a. Quantification of Temporal Fault Trees based on fuzzy set theory. In Proceedings of the Ninth International Conference on Dependability and complex systems DepCoS-RELCOMEX, ed. W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak and J. Kacprzyk, 255–64. Brunów: Springer International Publishing.
  • Kabir, S., and Y. Papadopoulos. 2019. Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science 115:154–75. doi:10.1016/j.ssci.2019.02.009.
  • Kabir, S., M. Walker, and Y. Papadopoulos. 2014b. Reliability analysis of dynamic systems by translating temporal fault trees into Bayesian networks. In Model-Based Safety and Assessment, ed. F. Ortmeier and A. Rauzy., Vol. 8822, 96–109. Cham: Springer International Publishing.
  • Kabir, S., M. Walker, and Y. Papadopoulos. 2018. Dynamic system safety analysis in HiP-HOPS with petri nets and Bayesian networks. Safety Science 105:55–70. doi:10.1016/j.ssci.2018.02.001.
  • Kabir, S., M. Walker, Y. Papadopoulos, E. Rüde, and P. Securius. 2016. Fuzzy temporal fault tree analysis of dynamic systems. International Journal of Approximate Reasoning 77:20–37. doi:10.1016/j.ijar.2016.05.006.
  • Kamil, M. Z., M. Taleb-Berrouane, F. Khan, and S. Ahmed. 2019. Dynamic domino effect risk assessment using Petri-nets. Process Safety and Environmental Protection 124:308–16. doi:10.1016/j.psep.2019.02.019.
  • Khakzad, N. 2015. Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures. Reliability Engineering & System Safety 138:263–72. doi:10.1016/j.ress.2015.02.007.
  • Khakzad, N., F. Khan, and P. Amyotte. August 2011. Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches. Reliability Engineering & System Safety 96(8):925–32. doi:10.1016/j.ress.2011.03.012.
  • Khakzad, N., F. Khan, and P. Amyotte. 2013. Quantitative risk analysis of offshore drilling operations: A Bayesian approach. Safety Science 57:108–17. doi:10.1016/j.ssci.2013.01.022.
  • Khan, F. I., and S. Abbasi. July 2000. Analytical simulation and PROFAT II: A new methodology and a computer automated tool for fault tree analysis in chemical process industries. Journal of Hazardous Materials 75(1):1–27. doi:10.1016/S0304-3894(00)00169-2.
  • Khan, F. I., R. Sadiq, and T. Husain. September 2002. Risk-based process safety assessment and control measures design for offshore process facilities. Journal of Hazardous Materials 94(1):1–36. doi:10.1016/S0304-3894(02)00004-3.
  • Markowski, A. S., M. S. Mannan, and A. Bigoszewska. November 2009. Fuzzy logic for process safety analysis. Journal of Loss Prevention in the Process Industries 22(6):695–702. doi:10.1016/j.jlp.2008.11.011.
  • McEwen, J. D., and M. R. Johnson. March 2012. Black carbon particulate matter emission factors for buoyancy-driven associated gas flares. Journal of the Air & Waste Management Association 62(3):307–21. doi:10.1080/10473289.2011.650040.
  • Montani, S., L. Portinale, A. Bobbio, and D. Codetta-Raiteri. July 2008. Radyban: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks. Reliability Engineering & System Safety 93(7):922–32. doi:10.1016/j.ress.2007.03.013.
  • Musharraf, M., J. Smith, F. Khan, B. Veitch, and S. MacKinnon. 2016. Assessing offshore emergency evacuation behavior in a virtual environment using a Bayesian Network approach. Reliability Engineering & System Safety 152:28–37. doi:10.1016/j.ress.2016.02.001.
  • Neapolitan, R. E. 2004. Learning Bayesian networks. Upper Saddle River, NJ, USA: Prentice Hall, Inc.
  • Neil, M., M. Tailor, D. Marquez, N. Fenton, and P. Hearty. July 2008. Modelling dependable systems using hybrid Bayesian networks. Reliability Engineering & System Safety 93(7):933–39. doi:10.1016/j.ress.2007.03.009.
  • Osuji, L., and S. Adesiyan. August 2005. The Isiokpo oil-pipeline leakage: total organic carbon/organic matter contents of affected soils. Chemistry & Biodiversity 2(8):1079–85. doi:10.1002/cbdv.200590077.
  • Pearl, J. 1988. Probabilistic reasoning in intelligent systems: networks of plausible inference. San Francisco, California: Morgan Kaufmann.
  • Ramesh, V., and R. Saravannan. 2011. Reliability assessment of a co-generation power plant in a sugar mill using fault tree analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33 (12):1168–83. doi:10.1080/15567031003681978.
  • Renjith, V., G. Madhu, V. L. G. Nayagam, and A. Bhasi. November 2010. Two-dimensional fuzzy fault tree analysis for chlorine release from a chlor-alkali industry using expert elicitation. Journal of Hazardous Materials 183(1–3):10310. doi:10.1016/j.jhazmat.2010.06.116.
  • Shi, L., J. Shuai, and K. Xu. August 2014. Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks. Journal of Hazardous Materials 278:529–38. doi:10.1016/j.jhazmat.2014.06.034.
  • Sigurdsson, J., L. Walls, and J. Quigley. 2001. Bayesian belief nets for managing expert judgement and modelling reliability. Quality and Reliability Engineering International 17 (3):181–90. doi:10.1002/(ISSN)1099-1638.
  • Sinaki, S., A. Tarighaleslami, and F. Jafarigol. 2011. Study on external costs of flare gases using Asian Development Bank Method. Chemical Engineering Transactions 25:39–44.
  • Sonibare, J., F. Adebiyi, E. Obanijesu, and O. Okelana. April 2010. Air quality index pattern around petroleum production facilities. Management of Environmental Quality: an International Journal 21(3):379–92. doi:10.1108/14777831011036920.
  • Sonibare, J., and F. Akeredolu. September 2004. A theoretical prediction of non-methane gaseous emissions from natural gas combustion. Energy Policy 32(14):1653–65. doi:10.1016/j.enpol.2004.02.008.
  • Taleb-Berrouane, M., F. Khan, and P. Amyotte. 2019. Bayesian Stochastic Petri Nets (BSPN) - A new modelling tool for dynamic safety and reliability analysis. Reliability Engineering & System Safety 193:1–15.
  • Taleb-Berrouane, M., F. Khan, K. Hawboldt, R. Eckert, and T. L. Skovhus. 2018. Model for microbiologically influenced corrosion potential assessment for the oil and gas industry. Corrosion Engineering, Science and Technology 53:378–392.
  • Talebberrouane, M., F. Khan, and Z. Lounis. November 2016. Availability analysis of safety critical systems using advanced fault tree and stochastic Petri net formalisms. Journal of Loss Prevention in the Process Industries 44:193–203. doi:10.1016/j.jlp.2016.09.007.
  • Tanaka, H., L. T. Fan, F. S. Lai, and K. Toguchi. December 1983. Fault-tree analysis by fuzzy probability. IEEE Transactions on Reliability R-32(5):453–57. doi:10.1109/TR.1983.5221727.
  • Torres-Toledan, J. G., and L. E. Sucar, 1998. Bayesian networks for reliability analysis of complex systems. In: Progress in Artificial Intelligence—IBERAMIA 98, Lisbon, Portugal. pp. 195–206.
  • Trucco, P., E. Cagno, F. Ruggeri, and O. Grande. 2008. A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation. Reliability Engineering and System Safety 93 (6):823–34. doi:10.1016/j.ress.2007.03.035.
  • Vesely, W. E., M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick, and J. Railsback, 2002. Fault tree handbook with aerospace applications.
  • Weber, P., G. Medina-Oliva, C. Simon, and B. Iung. June 2012. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Engineering Applications of Artificial Intelligence 25(4):671–82. doi:10.1016/j.engappai.2010.06.002.
  • Wu, W.-S., C.-F. Yang, J.-C. Chang, P.-A. Château, and Y.-C. Chang. 2015. Risk assessment by integrating interpretive structural modeling and Bayesian network, case of offshore pipeline project. Reliability Engineering & System Safety 142:515–24. doi:10.1016/j.ress.2015.06.013.
  • Yazdi, M., and S. Kabir. August 2017. A Fuzzy Bayesian Network approach for Risk Analysis in Process Industries. Process Safety and Environmental Protection 111:507–19. doi:10.1016/j.psep.2017.08.015.
  • Yazdi, M., and S. Kabir. 2018. Fuzzy evidence theory and Bayesian networks for process systems risk analysis. Human and Ecological Risk Assessment: an International Journal 1–30. doi:10.1080/10807039.2018.1493679.
  • Yeo, C. T., J. Bhandari, R. Abbassi, V. Garaniya, S. Chai, and B. Shomali. 2016. Dynamic risk analysis of offloading process in floating liquefied natural gas (FLNG) platform using Bayesian Network. Journal of Loss Prevention in the Process Industries 41:259–69. doi:10.1016/j.jlp.2016.04.002.
  • Yuan, Z., N. Khakzad, F. Khan, and P. Amyotte. 2015. Risk analysis of dust explosion scenarios using Bayesian networks. Risk Analysis 35 (2):278–91. doi:10.1111/risa.2015.35.issue-2.
  • Yuhua, D., and Y. Datao. March 2005. Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis. Journal of Loss Prevention in the Process Industries 18(2):83–88. doi:10.1016/j.jlp.2004.12.003.
  • Zadakbar, O., R. Abbassi, F. Khan, K. Karimpour, M. Golshani, and A. Vatani. 2011. Risk Analysis of Flare Flame-out Condition in a Gas Process Facility. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles 66 (3):521–30. doi:10.2516/ogst/2010027.
  • Zadakbar, O., F. Khan, and S. Imtiaz. 2015. Development of Economic Consequence Methodology for Process Risk Analysis. Risk Analysis 35 (4):713–31. doi:10.1111/risa.2015.35.issue-4.
  • Zarei, E., A. Azadeh, N. Khakzad, M. M. Aliabadi, and I. Mohammadfam. 2017. Dynamic safety assessment of natural gas stations using Bayesian network. Journal of Hazardous Materials 321:830–40. doi:10.1016/j.jhazmat.2016.09.074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.