439
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Simulation of coupled thermal-hydro-mechanical processes in fracture propagation of carbon dioxide fracturing in oil shale reservoirs

, ORCID Icon, , , &
Pages 7732-7751 | Received 04 Mar 2019, Accepted 13 Jul 2019, Published online: 10 Oct 2019

References

  • Brendow, K. 2003. Global oil shale issues and perspectives (Synthesis of the symposium on oil shale held in Tallinn (Estonia) on 18 and 19 November 2002). Oil Shale 20 (1):81–92.
  • Bunger, J. W., P. M. Crawford, and H. R. Johnson. 2004. Is oil shale America answer to peak-oil challenge? Oil & Gas Journal 102 (30):16–16.
  • Buono, R. M., B. Mayor, and E. López-Gunn. 2018. A comparative study of water-related issues in the context of hydraulic fracturing in Texas and Spain. Environmental Science & Policy 90:193–200. doi:10.1016/j.envsci.2017.12.006.
  • Cai, C., Y. Kang, X. Wang, Y. Hu, H. Chen, X. Yuan, and Y. Cai. 2018. Mechanism of supercritical carbon dioxide (SC-CO2) hydro-jet fracturing. Journal of CO2 Utilization 26:575–87. doi:10.1016/j.jcou.2018.06.012.
  • Chekhonin, E., and K. Levonyan. 2012. Hydraulic fracture propagation in highly permeable formations, with applications to tip screenout. International Journal of Rock Mechanics & Mining Sciences 50 (2):19–28. doi:10.1016/j.ijrmms.2011.12.006.
  • Cheng, Y. 2012. Impacts of the number of perforation clusters and cluster spacing on production performance of horizontal shale-gas wells. SPE Reservoir Evaluation & Engineering 15 (01):31–40. doi:10.2118/138843-PA.
  • Crouch, S. L. 1976. Solution of plane elasticity problem by the displacement discontinuity method: I & II. International Journal for Numerical Methods in Engineering 10 (2):301–43. doi:10.1002/nme.1620100206.
  • Deng, B., G. Yin, D. Zhang, M. Li, Y. Liu, and J. Lu. 2018. Experimental investigation of fracture propagation induced by carbon dioxide and water in coal seam reservoirs. Powder Technology 338:847–56. doi:10.1016/j.powtec.2018.07.071.
  • Detournay, E. 2004. Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics 4 (1):35–45. doi:10.1061/(ASCE)1532-3641(2004)4:1(35).
  • Dontsov, E. V., and A. P. Peirce. 2016. Comparison of toughness propagation criteria for blade-like and pseudo-3D hydraulic fractures. Engineering Fracture Mechanics 160:238–47. doi:10.1016/j.engfracmech.2016.04.023.
  • Dudley, R. W. BP statistical review of world energy June 2016 2016a. http://www.bp.com/statisticalreview.
  • Dudley, R. W.BP Energy Outlook 2035 2016b. http://www.bp.com/statisticalreview .
  • Dudley, R. W.BP Energy Outlook. 2016c. http://www.bp.com/statisticalreview.
  • Fenghour, A., W. A. Wakeham, and V. Vesovic. 1998. The viscosity of carbon dioxide. Journal of Physical and Chemical Reference Data 27 (1):31–44. doi:10.1063/1.556013.
  • Geng, Y., W. Liang, J. Liu, M. Cao, and Z. Kang. 2017. Evolution of pore and fracture structure of oil shale under high temperature and high pressure. Energy & Fuels 31 (10):10404–13. doi:10.1021/acs.energyfuels.7b01071.
  • Guo, J., and J. Zeng. 2015. A coupling model for wellbore transient temperature and pressure of fracturing with supercritical carbon dioxide. Shiyou Xuebao/Acta Petrolei Sinica 36 (2):203–09.
  • Guo, J., and Y. Liu. 2014. Opening of natural fracture and its effect on leakoff behavior in fractured gas reservoirs. Journal of Natural Gas Science and Engineering 18:324–28. doi:10.1016/j.jngse.2014.03.013.
  • Howard, G. C., and C. R. Fast. 1957. Optimum fluid characteristics for fracture extension[c]//drilling and production practice. American Petroleum Institute.
  • Inc.S.F.O.a.G. 2006. E-ICP project plan of operation-oil shale research and development project. Bureau of Land Management U.S.
  • Jiang, T., J. Zhang, and H. Wu. 2016. Experimental and numerical study on hydraulic fracture propagation in coalbed methane reservoir. Journal of Natural Gas Science & Engineering 35:455–67. doi:10.1016/j.jngse.2016.08.077.
  • Jiang, X. M., X. X. Han, and Z. G. Cui. 2007. Progress and recent utilization trends in combustion of Chinese oil shale. Progress in Energy and Combustion Science 33 (6):552–79. doi:10.1016/j.pecs.2006.06.002.
  • Jiang, Y., C. Qin, Z. Kang, J. Zhou, Y. Li, H. Liu, and X. Song. 2018. Experimental study of supercritical CO2 fracturing on initiation pressure and fracture propagation in shale under different triaxial stress conditions. Journal of Natural Gas Science and Engineering. doi:10.1016/j.jngse.2018.04.022.
  • Li, X.-G., L.-P. Yi, -Z.-Z. Yang, Y.-T. Chen, and J. Sun. 2018. Coupling model for calculation of transient temperature and pressure during coiled tubing drilling with supercritical carbon dioxide. International Journal of Heat and Mass Transfer 125:400–12. doi:10.1016/j.ijheatmasstransfer.2018.04.095.
  • Liu, Y., J. Guo, and Z. Chen. 2016. Leakoff characteristics and an equivalent leakoff coefficient in fractured tight gas reservoirs. Journal of Natural Gas Science and Engineering 31:603–11. doi:10.1016/j.jngse.2016.03.054.
  • Magnus, W. 2017. A 2D volume conservative numerical model of hydraulic fracturing. Computers and Structures 182:448–58. doi:10.1016/j.compstruc.2017.01.003.
  • Ni, H., W. Song, R. Wang, et al. 2016. Coupling model for carbon dioxide wellbore flow and heat transfer in coiled tubing drilling. Journal of Natural Gas Science and Engineering 30:414–20. doi:10.1016/j.jngse.2016.02.050.
  • Olson, J. E. 2004. Predicting fracture swarms—the influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. Geological Society, London, Special Publications 231 (1):73–88. doi:10.1144/GSL.SP.2004.231.01.05.
  • QIAN, J., J. WANG, and S. LI. 2006. Oil shale activity in China. Oil Shale 16:19.
  • Shi, F., X. L. Wang, C. Liu, H. Liu, and H. Wu. 2016. A coupled extended finite element approach for modeling hydraulic fracturing in consideration of proppant. Journal of Natural Gas Science & Engineering 33:885–97. doi:10.1016/j.jngse.2016.06.031.
  • Span, R., and W. Wagner. 1996. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data 25:1509–1596.). doi:10.1063/1.555991.
  • Taciuk, W. 2013. Does oil shale have a significant future? Oil Shale 30 (1):1–6. doi:10.3176/oil.2013.1.01.
  • Tanaka, P. L., J. D. Yeakel, W. A. Symington, et al. 2011. Plan to test ExxonMobil’s in situ oil shale technology on a proposed RD&D lease[C]//31st Oil Shale Symposium, Colorado, USA.
  • Vesovic, V., W. A. Wakeham, G. A. Olchowy, J. V. Sengers, J. T. R. Watson, and J. Millat. 1990. The transport properties of carbon dioxide. Journal of Physical and Chemical Reference Data 19 (3):763–808. doi:10.1063/1.555875.
  • Vinegar, H. 2006. Shell’s in-situ conversion process[C]//26th Oil Shale Symposium, Golden. Colorado, October 16. 18: 2006.
  • Wu, K. 2014. Numerical modeling of complex hydraulic fracture development in unconventional reservoirs. The University of Texas at Austin.
  • Wu, K., J. Olson, M. T. Balhoff, and W. Yu. 2017. Numerical analysis for promoting uniform development of simultaneous multiple-fracture propagation in horizontal wells. SPE Production & Operations 32 (01):41–50. doi:10.2118/174869-PA.
  • Xie, L., K. B. Min, and B. Shen. 2016. Simulation of hydraulic fracturing and its interactions with a pre-existing fracture using displacement discontinuity method. Journal of Natural Gas Science & Engineering 36:1284–94. doi:10.1016/j.jngse.2016.03.050.
  • Xu, W., J. Zhao, and S. S. Rahman, et al. 2018. A comprehensive model of a hydraulic fracture interacting with a natural fracture: analytical and numerical solution. Rock Mechanics and Rock Engineering :1–19.
  • Yang, Z. Z., Y. L P, L. X G, et al. 2018. Phase control of downhole fluid during supercritical carbon dioxide fracturing. Greenhouse Gases: Science and Technology 8(6):1079–89. doi:10.1002/ghg.1819.
  • Yoshimitsu, O. 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 75 (2):1018–40.
  • Zhao, G. J., C. Chen, and F. Qian. 2014. Application prospects in China of oil shale in situ mining method and an improved method[c]//applied mechanics and materials. Trans Tech Publications 535:602–05.
  • Zhou, C. L. 1996. General description of Fushun oil shale retorting factory in China. Oil Shale 13 (1):7–11.
  • Zhou, J., G. Liu, Y. Jiang, X. Xian, Q. Liu, D. Zhang, and J. Tan. 2016. Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale: An experimental study. Journal of Natural Gas Science and Engineering 36:369–77. doi:10.1016/j.jngse.2016.10.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.