540
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Electro-oxidation of waste glycerol to tartronic acid over Pt/CNT nanocatalyst: study of effect of reaction time on product distribution

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 10998-11014 | Received 13 Jun 2019, Accepted 22 Sep 2019, Published online: 11 Nov 2019

References

  • Arjona, N., S. Rivas, L. Álvarez-Contreras, M. Guerra-Balcázar, J. Ledesma-García, E. Kjeang, and L. Arriaga. 2017. Glycerol electro-oxidation in alkaline media using Pt and Pd catalysts electrodeposited on three-dimensional porous carbon electrodes. New Journal of Chemistry 41 (4):1854–63. doi:10.1039/C6NJ03739A.
  • Barth, T., and G. Lunde. 1926. Die Gitterkonstanten der Platinmetalle, Silber und Gold. Zeitschrift für Physikalische Chemie 121 (1):78–102.
  • Benipal, N., J. Qi, Q. Liu, and W. Li. 2017. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells. Applied Catalysis B: Environmental 210:121–30. doi:10.1016/j.apcatb.2017.02.082.
  • Bizot, P. M., B. R. Bailey, and P. D. Hicks, 1998. Use of tartronic acid as an oxygen scavenger. Google Patents.
  • Brownson, D. A., and C. E. Banks. 2014. The handbook of graphene electrochemistry. New york: Springer.
  • Chatterjee, A. 2017. Effect of scan rate on isopropanol electrooxidation onto Pt-Sn electrode. International Journal of ChemTech Research 10 (4):097–102.
  • Cheong, S., L. Graham, G. L. Brett, A. M. Henning, J. Watt, P. J. Miedziak, M. Song, Y. Takeda, S. H. Taylor, and R. D. Tilley. 2013. Au–Pd core–Shell nanoparticles as alcohol oxidation catalysts: Effect of shape and composition. ChemSusChem 6 (10):1858–62. doi:10.1002/cssc.v6.10.
  • Chotani, G., T. Dodge, A. Hsu, M. Kumar, R. LaDuca, D. Trimbur, W. Weyler, and K. Sanford. 2000. The commercial production of chemicals using pathway engineering. Biochimica Et Biophysica Acta (bba)-protein Structure and Molecular Enzymology 1543 (2):434–55. doi:10.1016/S0167-4838(00)00234-X.
  • Ciriminna, R., and M. Pagliaro. 2003. One-pot homogeneous and heterogeneous oxidation of glycerol to ketomalonic acid mediated by TEMPO. Advanced Synthesis & Catalysis 345 (3):383–88. doi:10.1002/(ISSN)1615-4169.
  • Cuesta, A., G. Cabello, M. Osawa, and C. Gutiérrez. 2012. Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catalysis 2 (5):728–38. doi:10.1021/cs200661z.
  • Da Silva, G. P., M. Mack, and J. Contiero. 2009. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances 27 (1):30–39. doi:10.1016/j.biotechadv.2008.07.006.
  • Da Silva, R. G., S. Aquino Neto, K. B. Kokoh, and A. R. De Andrade. 2017. Electroconversion of glycerol in alkaline medium: From generation of energy to formation of value-added products. Journal of Power Sources 351:174–82. doi:10.1016/j.jpowsour.2017.03.101.
  • Dai, C., L. Sun, H. Liao, B. Khezri, R. D. Webster, A. C. Fisher, and Z. J. Xu. 2017. Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. Journal of Catalysis 356:14–21. doi:10.1016/j.jcat.2017.10.010.
  • Datta, J., A. Dutta, and M. Biswas. 2012. Enhancement of functional properties of PtPd nano catalyst in metal-polymer composite matrix: Application in direct ethanol fuel cell. Electrochemistry Communications 20:56–59. doi:10.1016/j.elecom.2012.02.022.
  • Frota, E. F., Jr, V. V. S. de Barros, B. R. de Araújo, Â. G. Purgatto, and J. J. Linares. 2017. Pt/C containing different platinum loadings for use as electrocatalysts in alkaline PBI-based direct glycerol fuel cells. International Journal of Hydrogen Energy 42 (36):23095–106. doi:10.1016/j.ijhydene.2017.07.125.
  • Garcia, A. C., Y. Y. Birdja, G. Tremiliosi-Filho, and M. T. Koper. 2017. Glycerol electro-oxidation on bismuth-modified platinum single crystals. Journal of Catalysis 346:117–24. doi:10.1016/j.jcat.2016.12.013.
  • González-Cobos, J., S. Baranton, and C. Coutanceau. 2016. A systematic in situ infrared study of the electrooxidation of C3 alcohols on carbon-supported Pt and Pt–Bi catalysts. The Journal of Physical Chemistry C 120 (13):7155–64. doi:10.1021/acs.jpcc.6b00295.
  • Gupta, N., O. Khavryuchenko, A. Villa, and D. Su. 2017. Metal-free oxidation of glycerol over nitrogen-containing carbon nanotubes. ChemSusChem 10 (15):3030–34. doi:10.1002/cssc.v10.15.
  • Guterman, V., S. Belenov, A. Alekseenko, R. Lin, N. Y. Tabachkova, and O. Safronenko. 2018. Activity and stability of Pt/C and Pt-Cu/C electrocatalysts. Electrocatalysis 9 (5):550–62. doi:10.1007/s12678-017-0451-1.
  • Habibi, E., and H. Razmi. 2012. Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media. International Journal of Hydrogen Energy 37 (22):16800–09. doi:10.1016/j.ijhydene.2012.08.127.
  • Hartlep, M., W. Hussmann, N. Prayitno, I. Meynial-Salles, and A.-P. Zeng. 2002. Study of two-stage processes for the microbial production of 1, 3-propanediol from glucose. Applied Microbiology and Biotechnology 60 (1–2):60–66. doi:10.1007/s00253-002-1111-8.
  • Hong, W., C. Shang, J. Wang, and E. Wang. 2015. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy & Environmental Science 8 (10):2910–15. doi:10.1039/C5EE01988E.
  • Hwang, S.-W., S.-U. Rather, M.-U.-D. Naik, C. S. Soo, and K.-S. Nahm. 2009. Hydrogen uptake of multiwalled carbon nanotubes decorated with Pt–Pd alloy using thermal vapour deposition method. Journal of Alloys and Compounds 480 (2):L20–L24. doi:10.1016/j.jallcom.2009.01.136.
  • Kim, H. J., J. Lee, S. K. Green, G. W. Huber, and W. B. Kim. 2014. Selective glycerol oxidation by electrocatalytic dehydrogenation. ChemSusChem 7 (4):1051–56. doi:10.1002/cssc.201301218.
  • Kim, I.-T., M. Choi, J.-C. An, H.-K. Lee, and J. Shim. 2010. Performance of PtPd electrocatalysts in direct methanol fuel cell. Journal of Nanoscience and Nanotechnology 10 (5):3643–46. doi:10.1166/jnn.2010.2297.
  • Kim, S.-M., Y.-G. Jo, and S.-Y. Lee. 2015. The composition-controlled synthesis of Pt-Ag bimetallic nanochains for catalytic methanol oxidation. Electrochimica Acta 174:1244–52. doi:10.1016/j.electacta.2015.06.114.
  • Kohantorabi, M., S. Giannakis, and M. R. Gholami. 2019. Supported PtxPd1-x bimetallic nanoparticles on ionic liquid-functionalized SiO2@ graphene oxide nanocomposite and its application as an effective multiphasic catalyst. Applied Catalysis A: General 579:30–43. doi:10.1016/j.apcata.2019.04.015.
  • Kwon, Y., Y. Birdja, I. Spanos, P. Rodriguez, and M. T. Koper. 2012. Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catalysis 2 (5):759–64. doi:10.1021/cs200599g.
  • Kwon, Y., K. J. P. Schouten, and M. T. Koper. 2011. Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 3 (7):1176–85. doi:10.1002/cctc.201100023.
  • Lee, Y. W., S. W. Han, and K. Y. Lee. 2018. Site-selectively Pt-decorated PdPt bimetallic nanosheets characterized by electrocatalytic property for methanol oxidation. Materials Chemistry and Physics 214:201–08. doi:10.1016/j.matchemphys.2018.04.072.
  • Li, N., W.-Y. Xia, C.-W. Xu, and S. Chen. 2017. Pt/C and Pd/C catalysts promoted by Au for glycerol and CO electrooxidation in alkaline medium. Journal of the Energy Institute 90 (5):725–33. doi:10.1016/j.joei.2016.07.005.
  • Lin, J.-L., J. Ren, N. Tian, Z.-Y. Zhou, and S.-G. Sun. 2013. In situ FTIR spectroscopic studies of ethylene glycol electrooxidation on Pd electrode in alkaline solution: The effects of concentration. Journal of Electroanalytical Chemistry 688:165–71. doi:10.1016/j.jelechem.2012.08.027.
  • Liu, B., J. Chen, C. Xiao, K. Cui, L. Yang, H. Pang, and Y. Kuang. 2007. Preparation of Pt/MgO/CNT hybrid catalysts and their electrocatalytic properties for ethanol electrooxidation. Energy & Fuels 21 (3):1365–69. doi:10.1021/ef060452i.
  • Liu, D., J.-C. Liu, W. Cai, J. Ma, H. B. Yang, H. Xiao, J. Li, Y. Xiong, Y. Huang, and B. Liu. 2019. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nature Communications 10 (1):1779. doi:10.1038/s41467-019-09788-5.
  • Liu, M. T., L. X. Chen, D. N. Li, A. J. Wang, Q. L. Zhang, and J. J. Feng. 2017. One-pot controlled synthesis of AuPd@Pd core-shell nanocrystals with enhanced electrocatalytic performances for formic acid oxidation and glycerol oxidation. Journal of Colloid and Interface Science 508:551–58. doi:10.1016/j.jcis.2017.08.041.
  • Marchionni, A., M. Bevilacqua, C. Bianchini, Y. X. Chen, J. Filippi, P. Fornasiero, A. Lavacchi, H. Miller, L. Wang, and F. Vizza. 2013. Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells. ChemSusChem 6 (3):518–28. doi:10.1002/cssc.201200866.
  • Monteiro, M. R., C. L. Kugelmeier, R. S. Pinheiro, M. O. Batalha, and A. Da Silva César. 2018. Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews 88:109–22. doi:10.1016/j.rser.2018.02.019.
  • Nassr, A. B. A. A., A. Quetschke, E. Koslowski, and M. Bron. 2013. Electrocatalytic oxidation of formic acid on Pd/MWCNTs nanocatalysts prepared by the polyol method. Electrochimica Acta 102:202–11. doi:10.1016/j.electacta.2013.03.173.
  • Ning, X., X. Zhou, J. Luo, L. Ma, X. Xu, and L. Zhan. 2019a. Glycerol and formic acid electro-oxidation over Pt on S-doped carbon nanotubes: Effect of carbon support and synthesis method on the metal-support interaction. Electrochimica Acta 319:129–37. doi:10.1016/j.electacta.2019.06.147.
  • Ning, X., X. Zhou, J. Luo, L. Ma, X. Xu, and L. Zhan. 2019b. Glycerol and formic acid electro-oxidation over Pt on S-doped carbon nanotubes: Effect of carbon support and synthesis method on the metal-support interaction. Electrochimica Acta 319:129–37. doi:10.1016/j.electacta.2019.06.147.
  • Ong, H. R., G. Hegde, V. G. Chigrinov, and M. M. R. Khan. 2016a. Sulfuric disazo dye stabilized copper nanoparticle composite mixture: Synthesis and characterization. RSC Advances 6 (18):15094–100. doi:10.1039/C5RA26492H.
  • Ong, H. R., M. M. R. Khan, R. Ramli, R. M. Yunus, and M. W. Rahman. 2016b. Glycerolysis of palm oil using copper oxide nanoparticles combined with homogeneous base catalyst. New Journal of Chemistry 40 (10):8704–09. doi:10.1039/C6NJ01461E.
  • Ong, H. R., M. M. R. Khan, R. Ramli, R. M. Yunus, M. W. Rahman, C. S. Hong, and M. S. Ahmad. 2018a. Formation of CuO nanoparticle in glycerol and its catalytic activity for alkyd resin synthesis. Materials Today: Proceedings 5 (1):3165–75.
  • Ong, H. R., C. W. Woon, M. S. Ahmad, A. Yousuf, C. K. Cheng, and M. M. R. Khan. 2018b. Facile synthesis of PVP-MnO2/CNT composites as ORR electrocatalyst for an air-cathode microbial fuel cell. International Journal of Electrochemical Science 13 (8):7789–99. doi:10.20964/2018.08.05.
  • Ozturk, Z., F. Sen, S. Sen, and G. Gokagac. 2012. The preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. Journal of Materials Science 47 (23):8134–44. doi:10.1007/s10853-012-6709-3.
  • Rasmi, K., S. Vanithakumari, R. George, and U. K. Mudali. 2014. Synthesis and characterization of nanostructured platinum coated titanium as electrode material. Journal of Materials Engineering and Performance 23 (5):1673–79. doi:10.1007/s11665-014-0903-1.
  • Wang, B., L. Tao, Y. Cheng, F. Yang, Y. Jin, C. Zhou, H. Yu, and Y. Yang. 2019. Electrocatalytic oxidation of small molecule alcohols over Pt, Pd, and Au catalysts: The effect of alcohol’s hydrogen bond donation ability and molecular structure properties. Catalysts 9 (4):387. doi:10.3390/catal9040387.
  • Wang, S., and G. M. Lu. 1998. Effects of acidic treatments on the pore and surface properties of Ni catalyst supported on activated carbon. Carbon 36 (3):283–92. doi:10.1016/S0008-6223(97)00187-5.
  • Woon, C. W., H. R. Ong, K. F. Chong, K. M. Chan, and M. M. R. Khan. 2015. MnO2/CNT as ORR electrocatalyst in air-cathode microbial fuel cells. Procedia Chemistry 16:640–47. doi:10.1016/j.proche.2015.12.003.
  • Xiang, D., and L. Yin. 2012. Well-dispersed and size-tuned bimetallic PtFex nanoparticle catalysts supported on ordered mesoporous carbon for enhanced electrocatalytic activity in direct methanol fuel cells. Journal of Materials Chemistry 22 (19):9584. doi:10.1039/c2jm16641k.
  • Yang, G., Y. Zhou, H.-B. Pan, C. Zhu, S. Fu, C. M. Wai, D. Du, -J.-J. Zhu, and Y. Lin. 2016. Ultrasonic-assisted synthesis of Pd–Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrasonics Sonochemistry 28:192–98. doi:10.1016/j.ultsonch.2015.07.021.
  • Zhai, Y., Z. Zhu, X. Lu, and H. S. Zhou. 2016. Sodium citrate assisted facile synthesis of AuPd alloy networks for ethanol electrooxidation with high activity and durability. Journal of Power Sources 329:232–37. doi:10.1016/j.jpowsour.2016.08.081.
  • Zhang, H., M. Jin, and Y. Xia. 2012. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chemical Society Reviews 41 (24):8035–49. doi:10.1039/c2cs35173k.
  • Zhang, Z., L. Xin, J. Qi, Z. Wang, and W. Li. 2012. Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst. Green Chemistry 14 (8):2150–52. doi:10.1039/c2gc35505a.
  • Zhou, C.-H. C., J. N. Beltramini, Y.-X. Fan, and G. M. Lu. 2008. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chemical Society Reviews 37 (3):527–49. doi:10.1039/B707343G.
  • Zhou, Y., Y. Shen, and J. Piao. 2018a. Sustainable conversion of glycerol into value-added chemicals by selective electro-oxidation on Pt-based catalysts. ChemElectroChem 5 (13):1636–43. doi:10.1002/celc.v5.13.
  • Zhou, Y., Y. Shen, and J. Piao. 2018b. Sustainable conversion of glycerol into value-added chemicals by selective electro-oxidation on Pt-based catalysts. ChemElectroChem 5 (13):1636–43. doi:10.1002/celc.v5.13.
  • Zope, B. N., D. D. Hibbitts, M. Neurock, and R. J. Davis. 2010. Reactivity of the gold/water interface during selective oxidation catalysis. Science 330 (6000):74–78. doi:10.1126/science.1195055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.