292
Views
1
CrossRef citations to date
0
Altmetric
Articles

A Taguchi approach for optimizing the mixture design of cold-bonded PCM aggregates

ORCID Icon &
Received 10 May 2019, Accepted 07 Sep 2019, Published online: 03 Dec 2019

References

  • Akeiber, H., P. Nejat, M. Z. A. Majid, M. A. Wahid, F. Jomehzadeh, I. Z. Famileh, J. K. Calautit, B. R. Hughes, and S. A. Zaki. 2016. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews 60:1470–97. doi:10.1016/j.rser.2016.03.036.
  • Al-Saadi, S. N., and Z. Zhai. 2013. Modeling phase change materials embedded in building enclosure: A review. Renewable and Sustainable Energy Reviews 21:659–73. doi:10.1016/j.rser.2013.01.024.
  • An, C., S. Yang, G. Huang, S. Zhao, P. Zhang, and Y. Yao. 2016. Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: Equilibrium and kinetic adsorption studies. Fuel 165:264–71. doi:10.1016/j.fuel.2015.10.069.
  • Athienitis, A. K., C. Liu, D. Hawes, D. Banu, and D. Feldman. 1997. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Building and Environment 32 (5):405–10. doi:10.1016/S0360-1323(97)00009-7.
  • BASF Chemical Company, 2000. Provisional Specification Data Sheet (Micronal DS 5040 X).
  • Baykal, G., and A. G. Döven. 2000. Utilization of fly ash by pelletization process; theory, application areas and research results. Resources, Conservation and Recycling 30:59–77. doi:10.1016/S0921-3449(00)00042-2.
  • Bilgen, S. 2014. Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews 38:890–902. doi:10.1016/j.rser.2014.07.004.
  • Bui, L. A., C. Hwang, C. Chen, K. Lin, and M. Hsieh. 2012. Manufacture and performance of cold bonded lightweight aggregate using alkaline activators for high performance concrete. Construction and Building Materials 35:1056–62. doi:10.1016/j.conbuildmat.2012.04.032.
  • Cao, V. D., S. Pilehvar, C. Salas-Bringas, A. M. Szczotok, J. F. Rodriguez, M. Carmona, N. Al-Manasir, and A. L. Kjøniksen. 2017. Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Conversion and Management 133:56–66. doi:10.1016/j.enconman.2016.11.061.
  • Cheeseman, C. R., S. Makinde, and S. Bethanis. 2005. Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash. Resources, Conservation and Recycling 43:147–62. doi:10.1016/j.resconrec.2004.05.004.
  • Chen, B., Q. Yang, J. S. Li, and G. Q. Chen. 2017. Decoupling analysis on energy consumption, embodied GHG emissions and economic growth - The case study of Macao. Renewable and Sustainable Energy Reviews 67:662–72. doi:10.1016/j.rser.2016.09.027.
  • Colangelo, F., F. Messina, and R. Cioffi. 2015. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates. Journal of Hazardous Materials 299:181–91. doi:10.1016/j.jhazmat.2015.06.018.
  • Cretescu, I., G. Soreanu, and M. Harja. 2015. A low-cost sorbent for removal of copper ions from wastewaters based on sawdust/fly ash mixture. International Journal of Environmental Science and Technology 12:1799–810. doi:10.1007/s13762-014-0596-x.
  • Cui, H., S. A. Memon, and R. Liu. 2015. Development, mechanical properties and numerical simulation of macro encapsulated thermal energy storage concrete. Energy and Buildings 96:162–74. doi:10.1016/j.enbuild.2015.03.014.
  • Cui, H., W. Tang, Q. Qin, F. Xing, W. Liao, and H. Wen. 2017. Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball. Applied Energy 185:107–18. doi:10.1016/j.apenergy.2016.10.072.
  • Dilli, M. E., H. N. Atahan, and C. Şengül. 2015. A comparison of strength and elastic properties between conventional and lightweight structural concretes designed with expanded clay aggregates. Construction and Building Materials 101:260–67. doi:10.1016/j.conbuildmat.2015.10.080.
  • Djefela, D., S. Makhloufa, S. Khedachea, G. Lefebvreb, and L. Royonc. 2015. Preparation and characterization of stearic acid/olive pomace powder composite as form-stable phase change material. International Journal of Hydrogen Energy 40:13764–70. doi:10.1016/j.ijhydene.2015.05.078.
  • Doerr, T. 2014. Passive solar simplified. USA: Alitheia Press. ISBN: 1452856575.
  • EN 1097-6. 2000. Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption.
  • EN 13055. 2016. Lightweight aggregates.
  • Geetha, N. B., and R. Velraj. 2012. Passive cooling methods for energy efficient buildings with and without thermal energy storage – A review. Energy Education Science and Technology Part A: Energy Science and Res 29 (2):913–46.
  • Geetha, S., and K. Ramamurthy. 2010. Environmental friendly technology of cold-bonded bottom ash aggregate manufacture through chemical activation. Journal of Cleaner Production 18:1563–69. doi:10.1016/j.jclepro.2010.06.006.
  • Gesoğlu, M., E. Güneyisi, and H. Ö. Öz. 2012. Properties of lightweight aggregates produced with cold-bonding pelletization of fly ash and ground granulated blast furnace slag. Materials and Structures 45:1535–46. doi:10.1617/s11527-012-9855-9.
  • Giro-Paloma, J., C. Barreneche, M. Martinez, B. Sumiga, A. I. Fernandez, and L. F. Cabeza. 2016. Mechanical response evaluation of microcapsules from different slurries. Renewable Energy 85:732–39. doi:10.1016/j.renene.2015.07.033.
  • Gomathi, P., and A. Sivakumar. 2015. Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete. Construction and Building Materials 77:276–87. doi:10.1016/j.conbuildmat.2014.12.108.
  • Hadjieva, M., R. Stoykov, and T. Filipova. 2000. Composite salt–Hydrate concrete system for building energy storage. Renewable Energy 19 (1–2):111–15. doi:10.1016/S0960-1481(99)00024-5.
  • Hawes, D. W., D. Banu, and D. Feldman. 1992. The stability of phase change materials in concrete. Solar Energy Materials and Solar Cells 27:103–18. doi:10.1016/0927-0248(92)90113-4.
  • Hawes, D. W., D. Feldman, and D. Banu. 1993. Latent heat storage in building materials. Energy and Buildings 20 (1):77–86. doi:10.1016/0378-7788(93)90040-2.
  • Hines, W. W., D. C. Montgomery, D. M. Goldsman, and C. M. Borror. 2003. Probability and statistics in engineering. New York, NY: John Wiley & Sons, Inc.
  • Hunger, M., A. G. Entrop, I. Mandilaras, H. J. H. Brouwers, and M. Founti. 2009. The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement and Concrete Composites 31:731–43. doi:10.1016/j.cemconcomp.2009.08.002.
  • Ibn-Mohammed, T., R. Greenough, S. Taylor, L. Ozawa-Meida, and A. Acquaye. 2013. Operational vs. embodied emissions in buildings - A review of current trends. Energy Build 66:232–45. doi:10.1016/j.enbuild.2013.07.026.
  • International Energy Agency (IEA), 2016. IEA headline energy data. https://www.iea.org
  • Iten, M., S. Liu, and A. Shukla. 2016. A review on the air-PCM-TES application for free cooling and heating in the buildings. Renewable and Sustainable Energy Reviews 61:175–86. doi:10.1016/j.rser.2016.03.007.
  • Jelle, B. P. 2011. Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. Energy and Buildings 43:2549–63. doi:10.1016/j.enbuild.2011.05.015.
  • Jin, X., X. Xu, X. Zhang, and Y. Yin. 2014. Determination of the PCM melting temperature range using DSC. Thermochimica Acta 595:17–21. doi:10.1016/j.tca.2014.09.004.
  • Karaipekli, A., and A. Sarı. 2016. Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings. Solar Energy Materials and Solar Cells 149:19–28. doi:10.1016/j.solmat.2015.12.034.
  • Kayali, O. 2008. Fly ash lightweight aggregates in high performance concrete. Construction and Building Materials 22:2393–99. doi:10.1016/j.conbuildmat.2007.09.001.
  • Kockal, N. U., and T. Ozturan. 2011. Characteristics of lightweight fly ash aggregates produced with different binders and heat treatments. Cement and Concrete Composites 33:61–67. doi:10.1016/j.cemconcomp.2010.09.007.
  • Kong, T., 1996. Taguchi methods in experimental design. Proceeding of SAS Conference Midwest SAS Users Group, Minneapolis, Minnesota. https://www.lexjansen.com/cgi-bin/xsl_transform.php?x=mwsug1996#MWSUG1996-od068
  • Lachheb, M., Z. Younsi, H. Naji, M. Karkri, and S. B. Nasrallah. 2017. Thermal behavior of a hybrid PCM/plaster: A numerical and experimental investigation. Applied Thermal Engineering 111:49–59. doi:10.1016/j.applthermaleng.2016.09.083.
  • Lahlou, S. 2011. System innovation for sustainability 4: Case studies in sustainable consumption and production - Energy use and the built environment. Sheffield, GBR: Greenleaf Publishing.
  • Lee, T., D. W. Hawes, D. Banu, and D. Feldman. 2000. Control aspects of latent heat storage and recovery in concrete. Solar Energy Materials and Solar Cells 62 (3):217–37. doi:10.1016/S0927-0248(99)00128-2.
  • Li, M., H. Kao, Z. Wu, and J. Tan. 2011. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials. Applied Energy 88:1606–12. doi:10.1016/j.apenergy.2010.11.001.
  • Li, Y., D. Wu, J. Zhang, L. Chang, D. Wu, Z. Fang, and Y. Shi. 2000. Measurement and statistics of single pellet mechanical strength of differently shaped catalysts. Powder Technology 113:176–84. doi:10.1016/S0032-5910(00)00231-X.
  • Ling, T. C., and C. S. Poon. 2013. Use of phase change materials for thermal energy storage in concrete: An overview. Construction and Building Materials 46:55–62. doi:10.1016/j.conbuildmat.2013.04.031.
  • Liu, F., J. Wang, and X. Qian. 2017. Integrating phase change materials into concrete through microencapsulation using cenospheres. Cement and Concrete Composites 80:317–25. doi:10.1016/j.cemconcomp.2017.04.001.
  • Memo, S. A., H. Cui, H. Zhang, and F. Xing. 2015. Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete. Applied Energy 139:43–55. doi:10.1016/j.apenergy.2014.11.022.
  • Memon, A. S., T. Yiu Lo, X. Shi, S. Barbhuiya, and H. Cui. 2013a. Preparation, characterization and thermal properties of Lauryl alcohol/Kaolin as novel form-stable composite phase change material for thermal energy storage in buildings. Applied Thermal Engineering 59:336–47. doi:10.1016/j.applthermaleng.2013.05.015.
  • Memon, S. A., H. Cui, T. Y. Lo, and Q. Li. 2015. Development of structural–Functional integrated concrete with macro-encapsulated PCM for thermal energy storage. Applied Energy 150:245–57. doi:10.1016/j.apenergy.2015.03.137.
  • Memon, S. A., T. Y. Lo, H. Cui, and S. Barbhuiya. 2013b. Preparation, characterization and thermal properties of dodecanol/cement as novel form-stable composite phase change material. Energy and Build 66:697–705. doi:10.1016/j.enbuild.2013.07.083.
  • Nejat, P., F. Jomehzadeh, M. M. Taheri, M. Gohari, and M. Z. A. Majid. 2015. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews 43:843–62. doi:10.1016/j.rser.2014.11.066.
  • Phadke, M. S. 1989. Quality engineering using robust design. Englewood Cliffs, NJ: Prentice-Hall.
  • Pisello, A. L., A. D’Alessandro, C. Fabiani, A. P. Fiorelli, F. Ubertini, L. F. Cabeza, A. L. Materazzi, and F. Cotana. 2017. Multifunctional Analysis of Innovative PCM-filled Concretes. Energy Procedia 111:81–90. doi:10.1016/j.egypro.2017.03.010.
  • Rama Rao, S., and G. Padmanaban. 2012. Application of Taguchi methods and ANOVA in optimization of process parameters for metal removal rate in electrochemical machining of Al/5%SiC Composites. International Journal of Engineering Research and Applications (IJERA) 2 (3):192–97.
  • Ramakrishnan, S., X. Wang, J. Sanjayan, and J. Wilson. 2017. Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of PCM leakage. Materials Letters 192:88–91. doi:10.1016/j.matlet.2016.12.052.
  • Rao, R. S., C. G. Kumar, R. S. Prakasham, and P. J. Hobbs. 2008. The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal. Journal of Biotechnology 3:510–23. doi:10.1002/biot.200700201.
  • Sakulich, A. R., and D. P. Bentz. 2012. Incorporation of phase change materials in cementitious systems via fine lightweight aggregate. Construction and Building Materials 35:483–90. doi:10.1016/j.conbuildmat.2012.04.042.
  • Sarabèr, A., R. Overhof, T. Green, and J. Pels. 2012. Artificial lightweight aggregates as utilization for future ashes – A case study. Waste Management 32:144–52. doi:10.1016/j.wasman.2011.08.017.
  • Sarı, A., and A. Biçer. 2012. Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs. Energy and Buildings 51:73–83. doi:10.1016/j.enbuild.2012.04.010.
  • Sharifi, N. P., H. Jafferji, S. E. Reynolds, M. G. Blanchard, and A. R. Sakulich. 2016. Application of lightweight aggregate and rice husk ash to incorporate phase change materials into cementitious materials. Journal of Sustainable Cement-Based Materials 5 (6):349–69. doi:10.1080/21650373.2016.1207576.
  • Souayfane, F., F. Fardoun, and P. H. Biwole. 2016. Phase change materials (PCM) for cooling applications in buildings: A review. Energy and Buildings 129:396–431. doi:10.1016/j.enbuild.2016.04.006.
  • Terzić, A., L. Pezo, V. Mitić, and Z. Radojević. 2015. Artificial fly ash based aggregates properties influence on lightweight concrete performances. Ceramics International 41:2714–26. doi:10.1016/j.ceramint.2014.10.086.
  • Tuncel, E. Y., and B. Y. Pekmezci. 2019. Performance of glass fiber‐reinforced cement composites containing phase change materials. Environmental Progress & Sustainable Energy 38:e13061. doi:10.1002/ep.13061.
  • Turkish Steel Producers Association. 2015. Iron steel slag report, T.C. Ministry of Environment and Urbanization, Turkey.
  • Unal, R., and E. B. Dean. 1991. Taguchi approach to design optimization for quality and cost: An overview. Proceedings of the 13th Annual Conference of the International Society of Parametric Analysts, New Orleans, LA, USA.
  • United Nations. 2015. Resolution adopted by the General Assembly on 25 September 2015, General Assembly A/Res/70/1, Seventieth session. 21 October. 14–19. doi:10.3389/fninf.2015.00014.
  • Uyanik, S., and M. Topeli. 2012. Development fly ash utilization in Turkey and contribution of ISKEN to the market. Proceeding of EUROCOALASH 2012 Conference, Thessaloniki, Greece. doi:10.1094/PDIS-11-11-0999-PDN.
  • Vasugi, V., and K. Ramamurthy. 2014. Identification of design parameters influencing manufacture and properties of cold-bonded pond ash aggregate. Materials & Design (1980-2015) 54:264–78. doi:10.1016/j.matdes.2013.08.019.
  • Xu, B., and Z. Li. 2013. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Applied Energy 105:229–37. doi:10.1016/j.apenergy.2013.01.005.
  • Young, B. A., G. Falzone, Z. She, A. M. Thiele, Z. Wei, N. Neithalath, G. Sant, and L. Pilon. 2017. Early-age temperature evolutions in concrete pavements containing microencapsulated phase change materials. Construction and Building Materials 147:466–77. doi:10.1016/j.conbuildmat.2017.04.150.
  • Zhang, Z., G. Shi, S. Wang, X. Fang, and X. Liu. 2013. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renewable Energy 50:670–75. doi:10.1016/j.renene.2012.08.024.
  • Zhang, Z., N. Zhang, J. Peng, X. Fang, X. Gao, and Y. Fang. 2012. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Applied Energy 91:426–31. doi:10.1016/j.apenergy.2011.10.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.