907
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Scrap tire pyrolysis as a potential strategy for waste management pathway: a review

ORCID Icon, &
Received 26 Dec 2019, Accepted 16 Mar 2020, Published online: 27 Mar 2020

References

  • Aguado, R., A. Arrizabalaga, M. Arabiourrutia, G. Lopez, J. Bilbao, and M. Olazar. 2014. Principal component analysis for kinetic scheme proposal in the thermal and catalytic pyrolysis of waste tyres. Chemical Engineering Science 106:9–17. doi:10.1016/j.ces.2013.11.024.
  • Ahoor, A. H., and N. Zandi-Atashbar. 2014. Fuel production based on catalytic pyrolysis of waste tires as an optimized model. Energy Conversion and Management 87:653–69. doi:10.1016/j.enconman.2014.07.033.
  • Alsaleh, A., and M. L. Sattler. 2014. Waste tire pyrolysis: influential parameters and product properties. Current Sustainable/Renewable Energy Reports 1 (4):129–35. doi:10.1007/s40518-014-0019-0.
  • Alvarez, J., G. Lopez, M. Amutio, N. M. Mkhize, B. Danon, P. Van der Gryp, J. F. Görgens, J. Bilbao, and M. Olazar. 2017. Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor. Energy 128:463–74. doi:10.1016/j.energy.2017.03.163.
  • Antoniou, N., and A. Zabaniotou. 2013. Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery. Renewable and Sustainable Energy Reviews 20:539–58. doi:10.1016/j.rser.2012.12.005.
  • Arabiourrutia, M., M. Olazar, R. Aguado, G. Lopez, A. Barona, and J. Bilbao. 2008. HZSM-5 and HY zeolite catalyst performance in the pyrolysis of tires in a conical spouted bed reactor. Industrial & Engineering Chemistry Research 47 (20):7600–09. doi:10.1021/ie800376d.
  • Avsenik, L., D. Klinar, M. Tušar, and L. S. Perše. 2016. Use of modified slow tire pyrolysis product as a rejuvenator for aged bitumen. Construction and Building Materials 120:605–16. doi:10.1016/j.conbuildmat.2016.05.140.
  • Ayanoğlu, A., and Y. Recep. 2016. Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis. Energy 103:456–68. doi:10.1016/j.energy.2016.02.155.
  • Aydın, H., and C. İlkılıç. 2012. Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods. Fuel 102:605–12. doi:10.1016/j.fuel.2012.06.067.
  • Baškovič, U. Ž., T. Seljak, and K. Tomaž. 2017. Feasibility analysis of 100% tire pyrolysis oil in a common rail diesel engine. Energy 137:980–90. doi:10.1016/j.energy.2017.01.156.
  • Bernardo, M., N. Lapa, M. Gonçalves, B. Mendes, F. Pinto, I. Fonseca, and H. Lopes. 2012. Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures. Journal of Hazardous Materials 219–220 (219):196–202. doi:10.1016/j.jhazmat.2012.03.077.
  • Berrueco, C., E. Esperanza, F. J. Mastral, J. Ceamanos, and P. García-Bacaicoa. 2005. Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: Analysis of the gases obtained. Journal of Analytical and Applied Pyrolysis 74 (1–2):245–53. doi:10.1016/j.jaap.2004.10.007.
  • Bodisco, T. A., S. M. Ashrafur Rahman, F. M. Hossain, and R. J. Brown. 2019. On-road NOx emissions of a modern commercial light-duty diesel vehicle using a blend of tyre oil and diesel. Energy Reports 5:349–56. doi:10.1016/j.egyr.2019.03.002.
  • Boxiong, S., W. Chunfei, G. Binbin, and W. Rui. 2007. Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts. Applied Catalysis B: Environmental 73 (1–2):150–57. doi:10.1016/j.apcatb.2006.07.006.
  • Bozkurt, P. A., and M. Canel. 2014. Co-extraction of lignite and waste tire mixtures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (20):2296–304. doi:10.1080/15567036.2013.807320.
  • Choi, G.-G., S.-H. Jung, O. Seung-Jin, and J.-S. Kim. 2014. Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Fuel Processing Technology 123:57–64. doi:10.1016/j.fuproc.2014.02.007.
  • Choi, G.-G., O. Seung-Jin, and J.-S. Kim. 2016. Non-catalytic pyrolysis of scrap tires using a newly developed two-stage pyrolyzer for the production of a pyrolysis oil with a low sulfur content. Applied Energy 170:140–47. doi:10.1016/j.apenergy.2016.02.119.
  • Chumpitaz, G. R. A., C. J. R. Coronado, J. A. Carvalho, J. C. Andrade, A. Z. Mendiburu, G. M. Pinto, and T. A. de Souza. 2019. Design and study of a Pure Tire Pyrolysis Oil (TPO) and blended with Brazilian diesel using Y-Jet atomizer. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (3):139. doi:10.1007/s40430-019-1632-z.
  • Conesa, J. A., I. Martin-Gullon, R. Font, and J. Jauhiainen. 2004. Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Environmental Science & Technology 38 (11):3189–94. doi:10.1021/es034608u.
  • Czajczyńska, D., L. Anguilano, H. Ghazal, R. Krzyżyńska, A. J. Reynolds, N. Spencer, and H. Jouhara. 2017a. Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress 3:171–97. doi:10.1016/j.tsep.2017.06.003.
  • Czajczyńska, D., R. Krzyżyńska, H. Jouhara, and N. Spencer. 2017b. Use of pyrolytic gas from waste tire as a fuel: A review. Energy 134:1121–31. doi:10.1016/j.energy.2017.05.042.
  • Danon, B., P. Van Der Gryp, C. E. Schwarz, and J. F. Görgens. 2015. A review of dipentene (dl-limonene) production from waste tire pyrolysis. Journal of Analytical and Applied Pyrolysis 112:1–13. doi:10.1016/j.jaap.2014.12.025.
  • Dębek, C., and J. Walendziewski. 2015. Hydrorefining of oil from pyrolysis of whole tyres for passenger cars and vans. Fuel 159:659–65. doi:10.1016/j.fuel.2015.07.024.
  • Demirbas, A., B. O. Al-Sasi, and A.-S. Nizami. 2016. Conversion of waste tires to liquid products via sodium carbonate catalytic pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (16):2487–93. doi:10.1080/15567036.2015.1052598.
  • Dıez, C., O. Martınez, L. F. Calvo, J. Cara, and A. Morán. 2004. Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered. Waste Management 24 (5):463–69. doi:10.1016/j.wasman.2003.11.006.
  • Dũng, N. A., A. Mhodmonthin, S. Wongkasemjit, and S. Jitkarnka. 2009a. Effects of ITQ-21 and ITQ-24 as zeolite additives on the oil products obtained from the catalytic pyrolysis of waste tire. Journal of Analytical and Applied Pyrolysis 85 (1–2):338–44. doi:10.1016/j.jaap.2008.10.020.
  • Dũng, N. A., R. Klaewkla, S. Wongkasemjit, and S. Jitkarnka. 2009b. Light olefins and light oil production from catalytic pyrolysis of waste tire. Journal of Analytical and Applied Pyrolysis 86 (2):281–86. doi:10.1016/j.jaap.2009.07.006.
  • Fernández, A. M., C. Barriocanal, and R. Alvarez. 2012. Pyrolysis of a waste from the grinding of scrap tyres. Journal of Hazardous Materials 203:236–43. doi:10.1016/j.jhazmat.2011.12.014.
  • Galvagno, S., S. Casu, T. Casabianca, A. Calabrese, and G. Cornacchia. 2002. Pyrolysis process for the treatment of scrap tyres: preliminary experimental results. Waste Management 22 (8):917–23. doi:10.1016/S0956-053X(02)00083-1.
  • Gamboa, A. R., A. M. A. Rocha, L. R. Dos Santos, and J. A. de Carvalho Jr. 2019. Tire pyrolysis oil in brazil: potential production and quality of fuel. Renewable and Sustainable Energy Reviews 120. 109614.
  • Gómez-Hernández, R., Y. Panecatl-Bernal, and M.-R. Miguel Ángel. 2019. High yield and simple one-step production of carbon black nanoparticles from waste tires. Heliyon 5 (7):e02139. doi:10.1016/j.heliyon.2019.e02139.
  • Hariharan, S., S. Murugan, and G. Nagarajan. 2013. Effect of diethyl ether on tyre pyrolysis oil fueled diesel engine. Fuel 104:109–15. doi:10.1016/j.fuel.2012.08.041.
  • He, Z., Q. Jiao, Z. Fang, L. Taotao, C. Feng, L. Hansheng, and Y. Zhao. 2018. Light olefin production from catalytic pyrolysis of waste tires using nano-HZSM-5/γ-Al2O3 catalysts. Journal of Analytical and Applied Pyrolysis 129:66–71. doi:10.1016/j.jaap.2017.12.002.
  • Hita, I., M. Arabiourrutia, M. Olazar, J. Bilbao, J. M. Arandes, and C. Pedro. 2016. Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable and Sustainable Energy Reviews 56:745–59. doi:10.1016/j.rser.2015.11.081.
  • Hita, I., A. Gutiérrez, M. Olazar, J. Bilbao, J. M. Arandes, and C. Pedro. 2015. Upgrading model compounds and Scrap Tires Pyrolysis Oil (STPO) on hydrotreating NiMo catalysts with tailored supports. Fuel 145:158–69. doi:10.1016/j.fuel.2014.12.055.
  • Hoang, A. T., X. L. Bui, and X. D. Pham. 2018. A novel investigation of oil and heavy metal adsorption capacity from as-fabricated adsorbent based on agricultural by-product and porous polymer. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (8):929–39. doi:10.1080/15567036.2018.1466008.
  • Hoang, A. T., and A. T. Le. 2019a. A review on deposit formation in the injector of diesel engines running on biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (5):584–99. doi:10.1080/15567036.2018.1520342.
  • Hoang, A. T., and A. T. Le. 2019b. Trilateral correlation of spray characteristics, combustion parameters, and deposit formation in the injector hole of a diesel engine running on preheated jatropha oil and fossil diesel fuel. Biofuel Research Journal 6 (1):909–19. doi:10.18331/BRJ2019.6.1.2.
  • Hoang, A. T., A. T. Le, and V. V. Pham. 2019. A core correlation of spray characteristics, deposit formation, and combustion of a high-speed diesel engine fueled with jatropha oil and diesel fuel. Fuel 244:159–75. doi:10.1016/j.fuel.2019.02.009.
  • Hoang, A. T., and V. V. Le. 2017. The performance of a diesel engine fueled with diesel oil, biodiesel and preheated coconut oil. International Journal of Renewable Energy Development 6 (1):1–7. doi:10.14710/ijred.6.1.1-7.
  • Hoang, A. T., and V. V. Pham. 2019. A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (5):611–25. doi:10.1080/15567036.2018.1520344.
  • Hu, H., Y. Fang, H. Liu, Y. Ren, G. Luo, W. Liu, L. Aijun, and H. Yao. 2014. The fate of sulfur during rapid pyrolysis of scrap tires. Chemosphere 97:102–07. doi:10.1016/j.chemosphere.2013.10.037.
  • Huang, H., and L. Tang. 2009. Pyrolysis treatment of waste tire powder in a capacitively coupled RF plasma reactor. Energy Conversion and Management 50 (3):611–17. doi:10.1016/j.enconman.2008.10.023.
  • Hürdoğan, E., C. Ozalp, O. Kara, and M. Ozcanli. 2017. Experimental investigation on performance and emission characteristics of waste tire pyrolysis oil–diesel blends in a diesel engine. International Journal of Hydrogen Energy 42 (36):23373–78. doi:10.1016/j.ijhydene.2016.12.126.
  • İlkılıç, C., and H. Aydın. 2011. Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine. Fuel Processing Technology 92 (5):1129–35. doi:10.1016/j.fuproc.2011.01.009.
  • Islam, M. R., M. U. H. Joardder, M. A. Kader, and M. R. Sarker. 2011. “Valorization of solid tire wastes available in Bangladesh by thermal treatment.”
  • Islam, M. R., H. Haniu, and M. R. A. Beg. 2008. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties. Fuel 87 (13–14):3112–22. doi:10.1016/j.fuel.2008.04.036.
  • Ismail, H. Y., A. Abbas, F. Azizi, and J. Zeaiter. 2017. Pyrolysis of waste tires: A modeling and parameter estimation study using Aspen Plus®. Waste Management 60:482–93. doi:10.1016/j.wasman.2016.10.024.
  • Jadav, K., S. Pandian, A. Sircar, and D. Subramanian. 2019. Investigation of nano catalyst to enhance fuel quality in waste tyre pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–10. doi:10.1080/15567036.2019.1645245.
  • Jana, A. K. 2007. Nonlinear state estimation and generic model control of a continuous stirred tank reactor. International Journal of Chemical Reactor Engineering 5 (1). doi:10.2202/1542-6580.1345.
  • Jantaraksa, N., P. Prasassarakich, P. Reubroycharoen, and N. Hinchiranan. 2015. Cleaner alternative liquid fuels derived from the hydrodesulfurization of waste tire pyrolysis oil. Energy Conversion and Management 95:424–34. doi:10.1016/j.enconman.2015.02.003.
  • Kandasamy, J., and I. Gökalp. 2014. Pyrolysis, combustion, and steam gasification of various types of scrap tires for energy recovery. Energy & Fuels 29 (1):346–54. doi:10.1021/ef502283s.
  • Kar, Y. 2011. Catalytic pyrolysis of car tire waste using expanded perlite. Waste Management 31 (8):1772–82. doi:10.1016/j.wasman.2011.04.005.
  • Kordoghli, S., B. Khiari, M. Paraschiv, F. Zagrouba, and M. Tazerout. 2017a. Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor. Waste Management 67:288–97. doi:10.1016/j.wasman.2017.06.001.
  • Kordoghli, S., M. Paraschiv, M. Tazerout, B. Khiari, and F. Zagrouba. 2017b. Novel catalytic systems for waste tires pyrolysis: Optimization of gas fraction. Journal of Energy Resources Technology 139 (3):32203. doi:10.1115/1.4034979.
  • Kyari, M., A. Cunliffe, and P. T. Williams. 2005. Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires. Energy & Fuels 19 (3):1165–73. doi:10.1021/ef049686x.
  • Labaki, M., and M. Jeguirim. 2017. Thermochemical conversion of waste tyres—a review. Environmental Science and Pollution Research 24 (11):9962–92. doi:10.1007/s11356-016-7780-0.
  • Lah, B., D. Klinar, and B. Likozar. 2013. Pyrolysis of natural, butadiene, styrene–butadiene rubber and tyre components: Modelling kinetics and transport phenomena at different heating rates and formulations. Chemical Engineering Science 87:1–13. doi:10.1016/j.ces.2012.10.003.
  • Lam, S. S., R. K. Liew, A. Jusoh, C. T. Chong, F. N. Ani, and H. A. Chase. 2016. Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renewable and Sustainable Energy Reviews 53:741–53. doi:10.1016/j.rser.2015.09.005.
  • Leung, D. Y. C., X. L. Yin, Z. L. Zhao, B. Y. Xu, and Y. Chen. 2002. Pyrolysis of tire powder: influence of operation variables on the composition and yields of gaseous product. Fuel Processing Technology 79 (2):141–55. doi:10.1016/S0378-3820(02)00109-1.
  • Lewandowski, W. M., K. Januszewicz, and W. Kosakowski. 2019. Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type–a review. Journal of Analytical and Applied Pyrolysis 140:25–53. doi:10.1016/j.jaap.2019.03.018.
  • Li, G., B. Shen, and L. Feng. 2015. The mechanism of sulfur component in pyrolyzed char from waste tire on the elemental mercury removal. Chemical Engineering Journal 273:446–54. doi:10.1016/j.cej.2015.03.040.
  • Li, S.-Q., Q. Yao, Y. Chi, J.-H. Yan, and K.-F. Cen. 2004. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & Engineering Chemistry Research 43 (17):5133–45. doi:10.1021/ie030115m.
  • Li, W., C. Huang, L. Dapeng, P. Huo, M. Wang, L. Han, G. Chen, L. Huihui, L. Xiaohong, and Y. Wang. 2016. Derived oil production by catalytic pyrolysis of scrap tires. Chinese Journal of Catalysis 37 (4):526–32. doi:10.1016/S1872-2067(15)60998-6.
  • Lombardi, L., E. Carnevale, and A. Corti. 2015. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Management 37:26–44. doi:10.1016/j.wasman.2014.11.010.
  • López, F. A., T. A. Centeno, F. J. Alguacil, and B. Lobato. 2011. Distillation of granulated scrap tires in a pilot plant. Journal of Hazardous Materials 190 (1–3):285–92. doi:10.1016/j.jhazmat.2011.03.039.
  • López, G., M. Olazar, R. Aguado, and J. Bilbao. 2010. Continuous pyrolysis of waste tyres in a conical spouted bed reactor. Fuel 89 (8):1946–52. doi:10.1016/j.fuel.2010.03.029.
  • Lozhechnik, A. V., and V. V. Savchin. 2016. Pyrolysis of rubber in a screw reactor. Journal of Engineering Physics and Thermophysics 89 (6):1482–86. doi:10.1007/s10891-016-1517-2.
  • Martínez, J. D., M. Lapuerta, R. García-Contreras, R. Murillo, and G. Tomás. 2013a. Fuel properties of tire pyrolysis liquid and its blends with diesel fuel. Energy & Fuels 27 (6):3296–305. doi:10.1021/ef400602e.
  • Martínez, J. D., N. Puy, R. Murillo, T. García, M. V. Navarro, and A. M. Mastral. 2013b. Waste tyre pyrolysis–a review. Renewable and Sustainable Energy Reviews 23:179–213. doi:10.1016/j.rser.2013.02.038.
  • Miandad, R., M. A. Barakat, A. S. Aburiazaiza, M. Rehan, I. M. I. Ismail, and A. S. Nizami. 2017. Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration & Biodegradation 119:239–52. doi:10.1016/j.ibiod.2016.09.017.
  • Miandad, R., M. A. Barakat, M. Rehan, A. S. Aburiazaiza, J. Gardy, and A. S. Nizami. 2018. Effect of advanced catalysts on tire waste pyrolysis oil. Process Safety and Environmental Protection 116:542–52. doi:10.1016/j.psep.2018.03.024.
  • Mohan, A., S. Dutta, and V. Madav. 2019. Characterization and upgradation of Crude Tire Pyrolysis Oil (CTPO) obtained from a rotating autoclave reactor. Fuel 250:339–51. doi:10.1016/j.fuel.2019.03.139.
  • Muelas, Á., M. S. Callén, R. Murillo, and J. Ballester. 2019. Production and droplet combustion characteristics of waste tire pyrolysis oil. Fuel Processing Technology 196:106149. doi:10.1016/j.fuproc.2019.106149.
  • Muenpol, S., and S. Jitkarnka. 2016. Effects of Fe supported on zeolites on structures of hydrocarbon compounds and petrochemicals in waste tire-derived pyrolysis oils. Journal of Analytical and Applied Pyrolysis 117:147–56. doi:10.1016/j.jaap.2015.12.003.
  • Mushtaq, S., S. Munir, J. A. Awan, and J. Akhtar. 2018. Co-pyrolysis and hydrogenation of thar coal, waste plastic and waste oil blends for fuel oil production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (13):1604–12. doi:10.1080/15567036.2018.1486481.
  • Nakomcic-Smaragdakis, B., Z. Cepic, N. Senk, J. Doric, and L. Radovanovic. 2016. Use of scrap tires in cement production and their impact on nitrogen and sulfur oxides emissions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (4):485–93. doi:10.1080/15567036.2013.787473.
  • Ngusale, G. K., M. Oloko, S. Agong, and B. Nyakinya. 2017. Energy recovery from municipal solid waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (16):1807–14. doi:10.1080/15567036.2017.1376007.
  • Olazar, M., M. Arabiourrutia, G. López, R. Aguado, and J. Bilbao. 2008. Effect of acid catalysts on scrap tyre pyrolysis under fast heating conditions. Journal of Analytical and Applied Pyrolysis 82 (2):199–204. doi:10.1016/j.jaap.2008.03.006.
  • Olazar, M., M. J. San José, S. Alvarez, A. Morales, and J. Bilbao. 2004. Design of conical spouted beds for the handling of low-density solids. Industrial & Engineering Chemistry Research 43 (2):655–61. doi:10.1021/ie030613v.
  • Oliveira Neto, G. C. D., L. E. C. Chaves, L. F. R. Pinto, J. C. C. Santana, M. P. C. Amorim, and M. J. F. Rodrigues. 2019. Economic, environmental and social benefits of adoption of pyrolysis process of tires: A feasible and ecofriendly mode to reduce the impacts of scrap tires in Brazil. Sustainability 11 (7):2076. doi:10.3390/su11072076.
  • Pandey, A., T. Bhaskar, M. Stöcker, and R. Sukumaran. 2015. Recent advances in thermochemical conversion of biomass. Elsevier.
  • Parthasarathy, P., H. S. Choi, H. C. Park, J. G. Hwang, H. S. Yoo, B.-K. Lee, and M. Upadhyay. 2016. Influence of process conditions on product yield of waste tyre pyrolysis-a review. Korean Journal of Chemical Engineering 33 (8):2268–86. doi:10.1007/s11814-016-0126-2.
  • Pote, R. N., and R. K. Patil. 2019. Combustion and emission characteristics analysis of waste tyre pyrolysis oil. SN Applied Sciences 1 (4):294. doi:10.1007/s42452-019-0308-8.
  • Qu, W., Q. Zhou, Y.-Z. Wang, J. Zhang, -W.-W. Lan, W. Yan-Hui, J.-W. Yang, and D.-Z. Wang. 2006. Pyrolysis of waste tire on ZSM-5 zeolite with enhanced catalytic activities. Polymer Degradation and Stability 91 (10):2389–95. doi:10.1016/j.polymdegradstab.2006.03.014.
  • Quek, A., and R. Balasubramanian. 2013. Liquefaction of waste tires by pyrolysis for oil and chemicals—a review. Journal of Analytical and Applied Pyrolysis 101:1–16. doi:10.1016/j.jaap.2013.02.016.
  • Raclavská, H., A. Corsaro, D. Juchelková, V. Sassmanová, and F. Jaroslav. 2015. Effect of temperature on the enrichment and volatility of 18 elements during pyrolysis of biomass, coal, and tires. Fuel Processing Technology 131:330–37. doi:10.1016/j.fuproc.2014.12.001.
  • Raj, B. K., Y. Jyothi, P. Kanasani, and D. Siva Gangadhar. 2019. The best suitable alternative to diesel in a compression ignition engine between waste plastic oil and waste tire oil blends with diesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11. doi:10.1080/15567036.2019.1618985.
  • Raj, R. E., Z. R. Kennedy, and B. C. Pillai. 2013. Optimization of process parameters in flash pyrolysis of waste tyres to liquid and gaseous fuel in a fluidized bed reactor. Energy Conversion and Management 67:145–51. doi:10.1016/j.enconman.2012.11.012.
  • Rowhani, A., and T. J. Rainey. 2016. Scrap tyre management pathways and their use as a fuel—a review. Energies 9 (11):888. doi:10.3390/en9110888.
  • Roy, C., and A. Chaala. 2001. Vacuum pyrolysis of automobile shredder residues. Resources, Conservation and Recycling 32 (1):1–27. doi:10.1016/S0921-3449(00)00088-4.
  • Sanlisoy, A., and M. O. Carpinlioglu. 2017. A review on plasma gasification for solid waste disposal. International Journal of Hydrogen Energy 42 (2):1361–65. doi:10.1016/j.ijhydene.2016.06.008.
  • Shah, J., M. Rasul Jan, and F. Mabood. 2007. Catalytic conversion of waste tyres into valuable hydrocarbons. Journal of Polymers and the Environment 15 (3):207–11. doi:10.1007/s10924-007-0062-7.
  • Singh, R. K., B. Ruj, A. Jana, S. Mondal, B. Jana, A. K. Sadhukhan, and P. Gupta. 2018. Pyrolysis of three different categories of automotive tyre wastes: Product yield analysis and characterization. Journal of Analytical and Applied Pyrolysis 135:379–89. doi:10.1016/j.jaap.2018.08.011.
  • Ślusarczyk, B., M. Baryń, and S. Kot. 2016. Tire industry products as an alternative fuel. Polish Journal of Environmental Studies 25 (3):1263–70. doi:10.15244/pjoes/61543.
  • Song, Z., L. Liu, Y. Yang, J. Sun, X. Zhao, W. Wang, Y. Mao, X. Yuan, and Q. Wang. 2018. Characteristics of limonene formation during microwave pyrolysis of scrap tires and quantitative analysis. Energy 142:953–61. doi:10.1016/j.energy.2017.10.101.
  • Syamsiro, M., M. S. Dwicahyo, Y. Sulistiawati, M. Ridwan, and N. Citrasari. 2019. Development of a rotary kiln reactor for pyrolytic oil production from waste tire in Indonesia. IOP Conference Series: Earth and Environmental Science 245:12044. doi:10.1088/1755-1315/245/1/012044.
  • Trongyong, S., and S. Jitkarnka. 2015. Enhanced sulphur removal from tyre-derived oil using aluminosilicate MCM-48 with pyrolysis of waste tyres. Chemical Engineering Transactions 45:679–84.
  • Umeki, E. R., C. F. de Oliveira, R. B. Torres, and R. G. Dos Santos. 2016. Physico-chemistry properties of fuel blends composed of diesel and tire pyrolysis oil. Fuel 185:236–42. doi:10.1016/j.fuel.2016.07.092.
  • Undri, A., L. Rosi, M. Frediani, and P. Frediani. 2014. Upgraded fuel from microwave assisted pyrolysis of waste tire. Fuel 115:600–08. doi:10.1016/j.fuel.2013.07.058.
  • Undri, A., B. Sacchi, E. Cantisani, N. Toccafondi, L. Rosi, M. Frediani, and P. Frediani. 2013. Carbon from microwave assisted pyrolysis of waste tires. Journal of Analytical and Applied Pyrolysis 104:396–404. doi:10.1016/j.jaap.2013.06.006.
  • Uslu, S. 2019. Optimization of diesel engine performance and emission parameters operating waste tire pyrolysis oil–diesel blends using response surface methodology. Proceedings of the institution of mechanical engineers, part I: Journal of systems and control engineering, 959651819864851. London: SAGE Publications Sage UK
  • Uyumaz, A., B. Aydoğan, H. Solmaz, E. Yılmaz, D. Y. Hopa, T. A. Bahtli, Ö. Solmaz, and F. Aksoy. 2019. Production of waste tyre oil and experimental investigation on combustion, engine performance and exhaust emissions. Journal of the Energy Institute 92 (5):1406–18. doi:10.1016/j.joei.2018.09.001.
  • Verma, P., A. Zare, M. Jafari, T. A. Bodisco, T. Rainey, Z. D. Ristovski, and R. J. Brown. 2018. diesel engine performance and emissions with fuels derived from waste tyres. Scientific Reports 8 (1):2457. doi:10.1038/s41598-018-19330-0.
  • Virmond, E., J. D. Rocha, R. F. P. M. Moreira, and H. J. José. 2013. Valorization of agroindustrial solid residues and residues from biofuel production chains by thermochemical conversion: A review, citing brazil as a case study. Brazilian Journal of Chemical Engineering 30 (2):197–230. doi:10.1590/S0104-66322013000200001.
  • Wang, J., J. Jiang, X. Wang, P. Liu, L. Jing, G. Liu, K. Wang, L. Mi, Z. Zhong, and X. Junming. 2019. Catalytic conversion of rubber wastes to produce aromatic hydrocarbons over USY zeolites: Effect of SiO2/Al2O3 mole ratio. Energy Conversion and Management 197:111857. doi:10.1016/j.enconman.2019.111857.
  • Wang, Y., L. Dai, L. Fan, D. Duan, Y. Liu, R. Ruan, Y. Zhenting, Y. Liu, and L. Jiang. 2017. Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production. Journal of Analytical and Applied Pyrolysis 123:224–28.
  • Williams, P. T. 2013. Pyrolysis of waste tyres: A review. Waste Management 33 (8):1714–28. doi:10.1016/j.wasman.2013.05.003.
  • Williams, P. T., R. P. Bottrill, and A. M. Cunliffe. 1998. Combustion of tyre pyrolysis oil. Process Safety and Environmental Protection 76 (4):291–301. doi:10.1205/095758298529650.
  • Williams, P. T., and A. J. Brindle. 2002. Catalytic pyrolysis of tyres: Influence of catalyst temperature. Fuel 81 (18):2425–34. doi:10.1016/S0016-2361(02)00196-5.
  • Williams, P. T., and A. J. Brindle. 2003. Fluidised bed pyrolysis and catalytic pyrolysis of scrap tyres. Environmental Technology 24 (7):921–29. doi:10.1080/09593330309385629.
  • Witpathomwong, C., R. Longloilert, S. Wongkasemjit, and S. Jitkarnka. 2011. Improving light olefins and light oil production using Ru/MCM-48 in catalytic pyrolysis of waste tire. Energy Procedia 9:245–51. doi:10.1016/j.egypro.2011.09.026.
  • Zabaniotou, A. A., and G. Stavropoulos. 2003. Pyrolysis of used automobile tires and residual char utilization. Journal of Analytical and Applied Pyrolysis 70 (2):711–22. doi:10.1016/S0165-2370(03)00042-1.
  • Zhang, X., T. Wang, M. Longlong, and J. Chang. 2008. Vacuum pyrolysis of waste tires with basic additives. Waste Management 28 (11):2301–10. doi:10.1016/j.wasman.2007.10.009.
  • Zhang, X., H. Li, Q. Cao, L. Jin, and F. Wang. 2018. Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Management & Research 36 (5):436–44. doi:10.1177/0734242X18764292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.