239
Views
2
CrossRef citations to date
0
Altmetric
Articles

Experimental study on early prediction index gas for spontaneous combustion

, , , , &
Received 25 Nov 2019, Accepted 18 Mar 2020, Published online: 02 Apr 2020

References

  • Beamish, B. B., A. G. Lau, A. L. Moodie, and T. A. Vallance. 2002. Assessing the self-heating behaviour of Callide coal using a 2-metre column. Journal of Loss Prevention in the Process Industries 15:385–90. doi:10.1016/S0950-4230(02)00020-7.
  • Bhat, S., and P. K. Agarwal. 1996. The effect of moisture condensation on the spontaneous combustibility of coal. Fuel 75 (13):1523–32. doi:10.1016/0016-2361(96)00121-4.
  • Deng, J., X. Ma, Y. Zhang, Y. Li, and W. Zhu. 2015. Effects of pyrite on the spontaneous combustion of coal Effects of pyrite on the spontaneous combustion of coal. International Journal of Coal Science & Technology 2:306–11. doi:10.1007/s40789-015-0085-y.
  • Gao, F., C. B. Deng, X. F. Wang, X. M. Li, and F. W. Dai. 2018. Experimental study on adsorbing of flue gas and its application in preventing spontaneous combustion of coal. Adsorption Science & Technology 36:1744–54. doi:10.1177/0263617418807113.
  • GB/T474-2008. 2008. Preparation method of coal sample. Patent 73,046,19, filed May 1, 2000, and issued June 11. CHN.
  • GB/T475-2008. 2009. Method for manual sampling of commercial coal. Patent 73,040,21, filed December 04, 2008, and issued May 01. CHN.
  • GB/T482-2008. 2008. Sampling of coal seams. Patent 80,056,23, filed August 24, 2000, and issued April 26. CHN.
  • Guo, J., H. Wen, Y. Liu, and Y. Jin. 2019a. Data in brief Data on analysis of temperature inversion during spontaneous combustion of coal. Data in Brief 25:104304. doi:10.1016/j.dib.2019.104304.
  • Guo, X., C. Deng, X. Zhang, and Y. Wang. 2019b. Formation law of hydrocarbon index gases during coal spontaneous combustion in an oxygen-poor environment. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41:626–35. doi:10.1080/15567036.2018.1520345.
  • Küçük, A., Y. Kadioǧlu, and M. Ş. Gülaboǧlu. 2003. A study of spontaneous combustion characteristics of a Turkish lignite: Particle size, moisture of coal, humidity of air. Combustion and Flame 133:255–61. doi:10.1016/S0010-2180(02)00553-9.
  • Lei, C., J. Deng, K. Cao, L. Ma, Y. Xiao, and L. Ren. 2018. A random forest approach for predicting coal spontaneous combustion. Fuel. doi:10.1016/j.fuel.2018.03.005.
  • Liang, Y. T., X. J. Tang, H. Z. Luo, and Y. Sun. 2011. Quantitative spectrum analysis of characteristic gases of spontaneous combustion coal. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis. doi:10.3964/j..1000-0593(2011)09-2480-05.
  • Lu, P., G. X. Liao, J. H. Sun, and P. D. Li. 2004. Experimental research on index gas of the coal spontaneous at low-temperature stage. Journal of Loss Prevention in the Process Industries 17:243–47. doi:10.1016/j.jlp.2004.03.002.
  • Ma, B. G., and Z. Q. Hu. 2010. Effects of cover made of fly ash for controlling the harm from coal waste. In Progress in Safety Science and Technology, Vol. Viii, Pts a and B (Vol. 8, pp. 1427–1430). Beijing: Science Press Beijing.
  • Mao, Z., H. Zhu, X. Zhao, J. Sun, and Q. Wang. 2013. Experimental study on characteristic parameters of coal spontaneous combustion. Procedia Engineering 62:1081–86. doi:10.1016/j.proeng.2013.08.164.
  • Mcintosh, A. 2014. The spontaneous combustion tendency of blended coal The spontaneous combustion tendency of blended coal.
  • Monazam, E. R., L. J. Shadle, and A. Shamsi. 1998. Spontaneous combustion of char stockpiles. Energy and Fuels 12 (6):1305–12. doi:10.1021/ef980094m.
  • Naktiyok, J. 2019. Investigation of the oxidation behavior of a Turkey coal at low temperature by TGA, FTIR and BET analysis. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–11. doi:10.1080/15567036.2019.1645767.
  • Onifade, M., and B. Genc. 2018a. Modelling spontaneous combustion liability of carbonaceous materials. International Journal of Coal Science & Technology 5:191–212. doi:10.1007/s40789-018-0209-2.
  • Onifade, M., and B. Genc. 2018b. Prediction of the spontaneous combustion liability of coals and coal shales using statistical analysis. Journal- South African Institute of Mining and Metallurgy 118. doi:10.17159/2411-9717/2018/v118n8a2.
  • Onifade, M., and B. Genc. 2019. Spontaneous combustion liability of coal and coal-shale: A review of prediction methods. International Journal of Coal Science & Technology 6:151–68. doi:10.1007/s40789-019-0242-9.
  • Onifade, M., B. Genc, and A. Carpede. 2018. A new apparatus to establish the spontaneous combustion propensity of coals and coal-shales. International Journal of Mining Science and Technology. doi:10.1016/j.ijmst.2018.05.012.
  • Pandolfo, A. G., and R. B. Johns. 1993. Physical and chemical characteristics of densified low-rank coals. Fuel 72 (6):755–61. doi:10.1016/0016-2361(93)90076-E.
  • Patterson, R., and K. Luxbacher. 2012. Tracer gas applications in mining and implications for improved ventilation characterisation. International Journal of Mining Reclamation and Environment 26:337–50. doi:10.1080/17480930.2011.639188.
  • Stott, J. B., B. J. Harris, and P. J. Hansen. 1987. A “full-scale” laboratory test for the spontaneous heating of coal. Fuel 66:1012–13. doi:10.1016/0016-2361(87)90347-4.
  • Stracher, G. B. 2018. Coal and peat fires: A global perspective. doi:10.1016/C2016-0-02048-X.
  • Teichert, H., T. Fernholz, and V. Ebert. 2003. Simultaneous in situ measurement of CO, H _ 2 O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. Applied Optics 42:2043. doi:10.1364/ao.42.002043.
  • Tuyen, L. T., N. V. Tuan, K. Ohga, and T. Isei. 2016. Characteristics of spontaneous combustion of anthracite in vietnamese coal mines. Journal of MMIJ 132:167–74. doi:10.2473/journalofmmij.132.167.
  • Vance, W. E., X. D. Chen, and S. C. Scott. 1996. The rate of temperature rise of a subbituminous coal during spontaneous combustion in an adiabatic device: The effect of moisture content and drying methods. Combustion and Flame 106:261–70. doi:10.1016/0010-2180(95)00276-6.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2002. Examination of CO2, CO, and H2O formation during low-temperature oxidation of a bituminous coal. Energy and Fuels 16:586–92. doi:10.1021/ef010152v.
  • Wen, H., Z. Yu, S. Fan, X. Zhai, and W. Liu. 2017. Prediction of spontaneous combustion potential of coal in the gob area using CO extreme concentration: A case study. Combustion Science and Technology 189:1713–27. doi:10.1080/00102202.2017.1327430.
  • Whitehouse, A. E., and A. A. S. Mulyana. 2004. Coal fires in Indonesia. International Journal of Coal Geology 59:91–97. doi:10.1016/j.coal.2003.08.010.
  • Wu, J. J., and X. C. Liu. 2011. Risk assessment of underground coal fire development at regional scale. International Journal of Coal Geology 86:87–94. doi:10.1016/j.coal.2010.12.007.
  • Wu, Z., S. Hu, S. Jiang, X. He, H. Shao, K. Wang, D. Fan, and W. Li. 2018. Experimental study on prevention and control of coal spontaneous combustion with heat control inhibitor. Journal of Loss Prevention in the Process Industries 56:272–77. doi:10.1016/j.jlp.2018.09.012.
  • Xu, W., Z. He, Q. Luo, H. Shen, D. Liang, and T. Ren. 2018. The influence of soluble components on spontaneous combustion risk of sawdust samples. Thermochimica Acta 670:219–25. doi:10.1016/j.tca.2018.10.022.
  • Zhang, Y. H., Y. K. Lai, Z. A. Huang, and Y. K. Gao. 2011. Study on small simulation device of coal spontaneous combustion process. Procedia Engineering. doi:10.1016/j.proeng.2011.11.2257.
  • Zhou, L., G. Dai, R. Qin, and M. Tang. 2019. Low-temperature oxidation characteristics of bituminous coal with different gas contents: A case study. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–14. doi:10.1080/15567036.2019.1647310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.