148
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reaction characteristics of micron-sized Al powder with adding Al/CuO nano-thermite in heated steam

, , &
Received 25 Nov 2019, Accepted 06 Apr 2020, Published online: 22 Apr 2020

References

  • Abere, M. J., C. D. Yarrington, and D. P. Adams. 2018. Heating rate dependent ignition of Al/Pt nanolaminates through pulsed laser irradiation. Journal of Applied Physics 123 (23):235304–08. doi:10.1063/1.5026507.
  • Askeland, D. R. 2015. The science and engineering of materials, 7th ed. Boston: PWS Publishing Company.
  • Bergthorson, J. M. 2018. Recyclable metal fuels for clean and compact zero-carbon power. Progress in Energy and Combustion Science 68:169–96. doi:10.1016/j.pecs.2018.05.001.
  • Connell, T. L., G. A. Risha, R. A. Yetter, G. Young, D. S. Sundaram, and V. Yang. 2011. Combustion of alane and aluminum with water for hydrogen and thermal energy generation. Proceedings of the Combustion Institute 33 (2):1957–65. doi:10.1016/j.proci.2010.07.088.
  • Corcoran, A. L., S. Wang, Y. Aly, and E. L. Dreizin. 2015. Combustion of mechanically alloyed Al∙Mg powders in products of a hydrocarbon flame. Combustion Science Technology 187 (5):807–25. doi:10.1080/00102202.2014.973951.
  • Czech, E., and T. Troczynski. 2010. Hydrogen generation through massive corrosion of deformed aluminum in water. International Journal of Hydrogen Energy 35 (3):1029–37. doi:10.1016/j.ijhydene.2009.11.085.
  • David, E., and J. Kopac. 2012. Hydrolysis of aluminum dross material to achieve zero hazardous waste. Journal of Hazardous Materials 209:501–09. doi:10.1016/j.jhazmat.2012.01.064.
  • Dusarlapudi, K., B. K. Nashine, D. Bai, and C. S. Babu. 2011. Simulation of fast response thermocouple for the nuclear reactor core. COMSOL Conference in Bangalore, India.
  • Egan, G. C., T. Lagrange, and M. R. Zachariah. 2015. Time-resolved nanosecond imaging of nanoscale condensed phase reaction. The Journal of Physical Chemistry C 119 (5):2792–97. doi:10.1021/jp5084746.
  • Fan, M. Q., F. Xu, L. X. Sun, J. N. Zhao, T. Jiang, and W. X. Li. 2008. Hydrolysis of ball milling Al-Bi-hydride and Al-Bi-salt mixture for hydrogen generation. Journal of Alloys and Compounds 460:125–29. doi:10.1016/j.jallcom.2007.05.077.
  • Gao, M., X. Guo, M. Zou, and R. Yang. 2015. Studies on combustion of aluminum-magnesium alloy hydro-reactive metal fuel. Journal of Propulsion Technology 36 (4):629–34.
  • Ghassemi, H., and H. F. Fasih. 2013. Propulsive characteristics of metal fuel-rich pyrotechnics in hydro-reactive motors. Aerospace Science and Technology 28 (1):1–8. doi:10.1016/j.ast.2012.08.011.
  • Granier, J. J., and M. L. Pantoya. 2004. Laser ignition of nanocomposite thermites. Combustion and Flame 138 (4):373–83. doi:10.1016/j.combustflame.2004.05.006.
  • Guo, Y., G. Liu, H. Jin, Z. Shi, and G. Qiao. 2011. Intermetallic phase formation in diffusion-bonded Cu/Al laminates. Journal of Materials Science 46 (8):2467–73. doi:10.1007/s10853-010-5093-0.
  • Haidara, F., M. C. Record, B. Duployer, and D. Mangelinck. 2012. Investigation of reactive phase formation in the Al-Cu thin film systems. Surface and Coatings Technology 206 (19–20):3851–56. doi:10.1016/j.surfcoat.2012.01.065.
  • Hang, C. J., C. Q. Wang, M. Mayer, Y. H. Tian, Y. Zhou, and H. H. Wang. 2008. Growth behavior of cu/al intermetallic compounds and cracks in copper ball bonds during isothermal aging. Microelectronics Reliability 48 (3):416–24. doi:10.1016/j.microrel.2007.06.008.
  • Huang, H. T., M. S. Zou, X. Y. Guo, and R. J. Yang. 2015. Reactions characteristics of different powders in heated steam. Combustion Science Technology 187 (5):797–806. doi:doi.10.1080/00102202.2014.973950.
  • Ivanov, V. G., O. V. Gavrilyuk, O. V. Glazkov, and M. N. Safronov. 2000. Specific features of the reaction between ultrafine aluminum and water in a combustion regime. Combustion, Explosion and Shock Waves 36 (2):213–19. doi:10.1007/BF02699363.
  • King, P. C., G. Bae, S. H. Zahiri, M. Jahedi, and C. Lee. 2010. An experimental and finite element study of cold spray copper impact onto two aluminum substrates. Journal of Thermal Spray Technology 19 (3):620–34. doi:10.1007/s11666-009-9454-7.
  • Lee, K., D. Kim, J. Shim, S. Bae, D. J. Shin, B. F. Treml, J. Yoo, T. Hanrath, W. D. Kim, and D. C. Lee. 2015. Formation of Cu layer on Al nanoparticles during thermite reaction in Al/CuO nanoparticle composites: Investigation of off-stoichiometry ratio of Al and CuO nanoparticles for maximum pressure change. Combustion and Flame 162 (10):3823–28. doi:10.1016/j.combustflame.2015.07.019.
  • Li, F., B. Zhu, Y. Sun, and W. Tao. 2017a. Hydrogen generation by means of the combustion of aluminum powder/sodium borohydride in steam. International Journal of Hydrogen Energy 42 (6):3804–12. doi:10.1016/j.ijhydene.2016.07.015.
  • Li, P., J. Wang, X. Zhang, X. Hou, B. Yan, and H. Guo. 2017b. Molten salt-enhanced production of hydrogen by using skimmed hot dross from aluminum remelting at high temperature. International Journal of Hydrogen Energy 42 (18):12956–66. doi:10.1016/j.ijhydene.2017.04.046.
  • Martínez, S. S., W. L. Benítes, A. A. Á. Gallegos, and P. J. Sebastián. 2005. Recycling of aluminum to produce green energy. Solar Energy Materials and Solar Cells 88 (2):237–43. doi:10.1016/j.solmat.2004.09.022.
  • Risha, G. A., J. L. Sabourin, V. Yang, R. A. Yetter, S. F. Son, and S. B. Tappan. 2008. Combustion and conversion efficiency of nanoaluminum-water mixtures. Combustion Science Technology 180 (12):2127–42. doi:10.1080/00102200802414873.
  • Risha, G. A., S. F. Son, R. A. Yetter, V. Yang, and B. C. Tappan. 2007. Combustion of nano-aluminum and liquid water. Proceedings of the Combustion Institute 31 (2):2029–36. doi:10.1016/j.proci.2006.08.056.
  • Shafirovich, E., V. Diakov, and A. Varma. 2006. Combustion of novel chemical mixtures for hydrogen generation. Combustion and Flame 144 (1–2):415–18. doi:10.1016/j.combustflame.2005.07.018.
  • Shmelev, V., H. Yang, and C. Yim. 2016. Hydrogen generation by reaction of molten aluminum with water steam. International Journal of Hydrogen Energy 41 (33):14562–72. doi:10.1016/j.ijhydene.2016.05.159.
  • Soler, L., J. Macanás, M. Muñoz, and J. Casado. 2007. Synergistic hydrogen generation from aluminum, aluminum alloys and sodium borohydride in aqueous solutions. International Journal of Hydrogen Energy 32 (18):4702–10. doi:10.1016/j.ijhydene.2007.06.019.
  • Sundaram, D. S., V. Yang, T. L. Connell, G. A. Risha, and R. A. Yetter. 2013. Flame propagation of nano/micron-sized aluminum particles and ice (ALICE) mixtures. Proceedings of the Combustion Institute 34 (2):2221–28. doi:10.1016/j.proci.2012.06.129.
  • Swamy, A. K. N., and E. Shafirovich. 2014. Conversion of aluminum foil to powders that react and burn with water. Combustion and Flame 161 (1):322–31. doi:10.1016/j.combustflame.2013.08.017.
  • Uehara, K., H. Takeshita, and H. Kotaka. 2002. Hydrogen gas generation in the wet cutting of aluminum and its alloys. Journal of Materials Processing Technology 127 (2):174–77. doi:10.1016/s0924-0136(02)00121-8.
  • Wang, H., G. Jian, G. C. Egan, and M. R. Zachariah. 2014. Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combustion and Flame 161 (8):2203–08. doi:10.1016/j.combustflame.2014.02.003.
  • Wang, H.Z., D.Y.C. Leung, M.K.H. Leung, and M.N. Leung. 2009. A review on hydrogen production using aluminum and aluminum alloys. Renew. Sust. Energ. Rev. 13:845–53. doi: 10.1016/j.rser.2008.02.009.
  • Wang, W., D. M. Chen, and K. Yang. 2010. Investigation on microstructure and hydrogen generation performance of Al-rich alloys. International Journal of Hydrogen Energy 35 (21):12011–19. doi:10.1016/j.ijhydene.2010.08.089.
  • Xiao, F., J. Li, X. Zhou, and R. Yang. 2018a. Preparation of mechanically activated aluminum-rich Al-Co3O4 powders and their thermal properties and reactivity with water steam at high temperature. Combustion Science Technology 190 (11):1935–49. doi:10.1080/00102202.2018.1477771.
  • Xiao, F., R. J. Yang, and J. M. Li. 2018b. Preparation and characterization of mechanically activated aluminum/polytetrafluoroethylene composites and their reaction properties in high temperature water steam. Journal of Alloys and Compounds 761:24–30. doi:10.1016/j.jallcom.2018.05.087.
  • Yang, W., T. Zhang, J. Liu, Z. Wang, J. Zhou, and K. Cen. 2015. Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature. Energy 93:451–57. doi:10.1016/j.energy.2015.09.048.
  • Yavor, Y., S. Goroshin, J. M. Bergthorson, and D. L. Frost. 2015. Comparative reactivity of industrial metal powders with water for hydrogen production. International Journal of Hydrogen Energy 40 (2):1026–36. doi:10.1016/j.ijhydene.2014.11.075.
  • Yu, P., C. J. Deng, N. G. Ma, M. Y. Yan, and D. H. L. Ng. 2003. Formation of nanostructured eutectic network in α-Al2O3 reinforced Al-Cu alloy matrix composite. Acta Materialia 51 (12):3445–54. doi:10.1016/S1359-6454(03)00165-4.
  • Zhang, T., J. Zhou, W. Yang, and J. Liu. 2017. Hydrogen production and temperature change during the reaction of Al–Li alloy with water vapor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (10):1036–42. doi:10.1080/15567036.2017.1286528.
  • Zhao, Z., X. Chen, and M. Hao. 2011. Hydrogen generation by splitting water with Al-Ca alloy. Energy 36 (5):2782–87. doi:10.1016/j.energy.2011.02.018.
  • Zhou, L., N. Piekiel, S. Chowdhury, and M. R. Zachariach. 2010. Time-resolved mass spectrometry of the exothermic reaction between nanoaluminum and metal oxides: The role of oxygen release. The Journal of Physical Chemistry C 114 (33):14269–75. doi:10.1021/jp101146a.
  • Zhou, X., M. Zou, F. Huang, R. Yang, and X. Guo. 2017. Effect of organic fluoride on combustion agglomerates of aluminized HTPB solid propellant. Propellants, Explosives, Pyrotechnics 42 (4):417–22. doi:10.1002/prep.201600096.
  • Zhu, B., F. Li, Y. Sun, Y. Wu, W. Shi, W. Han, Q. Wang, and Q. Wang. 2019. Enhancing ignition and combustion characteristics of micron-sized aluminum powder in steam by adding sodium fluoride. Combustion and Flame 205:68–79. doi:10.1016/j.combustflame.2019.02.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.