357
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hydrodeoxygenation of bio-oil and model compounds for production of chemical materials at atmospheric pressure over nickel-based zeolite catalysts

ORCID Icon, , , , , & show all
Received 24 Jul 2019, Accepted 04 May 2020, Published online: 27 May 2020

References

  • Araújo, A., G. Queiroz, D. Maia, A. Gondim, L. Souza, V. Fernandes Jr, and A. Araujo. 2018. Fast pyrolysis of sunflower oil in the presence of microporous and mesoporous materials for production of bio-oil. Catalysts 8 (7):261. doi:10.3390/catal8070261.
  • Ardiyanti, A., S. Khromova, H. Venderbosch, V. Yakovlev, I. Melián-Cabrera, and H. Heeres. 2012. Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni-Cu catalysts on various supports. Applied Catalysis. A, General 449:121–30. doi:10.1016/j.apcata.2012.09.016.
  • Ardiyanti, A. R., M. V. Bykova, S. A. Khromova, W. Yin, R. H. Venderbosch, V. A. Yakovlev, and H. J. Heeres. 2015. Ni-based catalysts for the hydrotreatment of fast pyrolysis oil. Energy & Fuels: An American Chemical Society Journal 30 (3):1544–54. doi:10.1021/acs.energyfuels.5b02223.
  • Chen, C. J., W. S. Lee, and A. Bhan. 2016. Mo2C catalyzed vapor phase hydrodeoxygenation of lignin-derived phenolic compound mixtures to aromatics under ambient pressure. Applied Catalysis. A, General 510:42–48. doi:10.1016/j.apcata.2015.10.043.
  • Do, P. T. M., A. J. Foster, J. Chen, and R. F. Lobo. 2012. Bimetallic effects in the hydrodeoxygenation of meta-cresol on γ-Al2O3 supported Pt-Ni and Pt-Co catalysts. Green Chemistry 14 (5):1388–97. doi:10.1039/C2GC16544A.
  • French, R., J. Stunkel, S. Black, M. Myers, M. Yung, and K. Iisa. 2014. Evaluate impact of catalyst type on oil yield and hydrogen consumption from mild hydrotreating. Energy & Fuels : An American Chemical Society Journal 28 (5):3086–95. doi:10.1021/ef4019349.
  • Koul, R., N. Kumar, and R. Singh. 2019. A review on the production and physicochemical properties of renewable diesel and its comparison with biodiesel. Energy Sources Part A-Recovery Utilization and Environmental Effects 1–21. doi:10.1080/15567036.2019.1646355.
  • Lee, C. R., J. S. Yoon, Y. W. Suh, J. W. Choi, J. M. Ha, D. J. Suh, and Y. K. Park. 2012. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol. Catalysis Communications 17:54–58. doi:10.1016/j.catcom.2011.10.011.
  • Lee, H., H. Kim, M. J. Yu, C. H. Ko, J. K. Jeon, J. Jae, S. H. Park, S. C. Jung, and Y. K. Park. 2016. Catalytic hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst. Scientific Reports 6 (1):28765. doi:10.1038/srep28765.
  • Li, C., J. Ma, Z. Xiao, S. B. Hector, and Q. Liu. 2018. Catalytic cracking of swida wilsoniana oil for hydrocarbon biofuel over Cu-modified ZSM-5 zeolite. Fuel 218:59–66. doi:10.1016/j.fuel.2018.01.026.
  • Li, C., X. Zhao, A. Wang, G. W. Huber, and T. Zhang. 2015a. Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews 115 (21):11559–624. doi:10.1021/acs.chemrev.5b00155.
  • Li, J., Y. Yu, X. Li, W. Wang, G. Yu, S. Deng, J. Huang, B. Wang, and Y. Wang. 2015b. Maximizing carbon efficiency of petrochemical production from catalytic co-pyrolysis of biomass and plastics using gallium-containing mfi zeolites. Applied Catalysis. B, Environmental 172-173:154–64. doi:10.1016/j.apcatb.2015.02.015.
  • Li, X., Y. Zhu, S. Shao, X. Zhang, and C. Hu. 2019. Optimization for online catalytic upgrading of bio-oil from rape straw over MCM-22 zeolite. Energy Sources Part A: Recovery Utilization and Environmental Effects 41:1–11. doi:10.1080/15567036.2019.1604898.
  • Li, Z., E. Jiang, X. Xu, Y. Sun, and R. Tu. 2020a. Hydrodeoxygenation of phenols, acids, and ketones as model bio-oil for hydrocarbon fuel over Ni-based catalysts modified by Al, La and Ga. Renewable Energy 146:1991–2007. doi:10.1016/j.renene.2019.08.012.
  • Li, Z., X. Xu, E. Jiang, P. Han, Y. Sun, L. Zhou, P. Zhong, and X. Fan. 2020b. Alkane from hydrodeoxygenation (HDO) combined with in-situ multistage condensation of biomass continuous pyrolysis bio-oil via mixed supports catalyst Ni/HZSM-5-γ-Al2O3. Renewable Energy 149:535–48. doi:10.1016/j.renene.2019.10.035.
  • Lu, M., H. Du, B. Wei, J. Zhu, M. Li, Y. Shan, and C. Song. 2017. Catalytic hydrodeoxygenation of guaiacol over palladium catalyst on different titania supports. Energy & Fuels 31 (10):10858–65. doi:10.1021/acs.energyfuels.7b01498.
  • Ly, H., K. Im, Y. Go, E. Galiwano, S. Kim, J. Kim, J. Choi, and H. Woo. 2016. Spray pyrolysis synthesis of γ-Al2O3 supported metal and metal phosphide catalysts and their activity in the hydrodeoxygenation of a bio-oil model compound. Energy Conversion and Management 127:545–53. doi:10.1016/j.enconman.2016.09.020.
  • Manigandan, S., P. Gunasekar, S. Nithya, and J. Devipriya. 2019. Effects of nanoadditives on emission characteristics of engine fuelled with biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–9. doi:10.1080/15567036.2019.1587048.
  • Manigandan, S., V. K. Ponnusamy, P. Booma Devi, S. A. Oke, Y. Sohret, S. Venkatesh, M. Rakesh Vimal, and P. Gunasekar. 2020a. Effect of nanoparticles and hydrogen on combustion performance and exhaust emission of corn blended biodiesel in compression ignition engine with advanced timing. International Journal of Hydrogen Energy 45 (4):3327–39. doi:10.1016/j.ijhydene.2019.11.172.
  • Manigandan, S., R. Sarweswaran, P. Booma Devi, Y. Sohret, A. Kondratiev, S. Venkatesh, M. Rakesh Vimal, and J. Jensin Joshua. 2020b. Comparative study of nanoadditives TiO2, CNT, Al2O3, CuO and CeO2 on reduction of diesel engine emission operating on hydrogen fuel blends. Fuel 262:116336. doi:10.1016/j.fuel.2019.116336.
  • Nimmanwudipong, T., R. C. Runnebaum, D. E. Block, and B. C. Gates. 2011. Catalytic conversion of guaiacol catalyzed by platinum supported on alumina: Reaction network including hydrodeoxygenation reactions. Energy & Fuels 25 (8):3417–27. doi:10.1021/ef200803d.
  • Niu, X., F. Feng, G. Yuan, X. Zhang, and Q. Wang. 2019. Hollow MFI zeolite supported Pt catalysts for highly selective and stable hydrodeoxygenation of guaiacol to cycloalkanes. Nanomaterials 9 (3):1–15. doi:10.3390/nano9030362.
  • Olcese, R., M. M. Bettahar, B. Malaman, J. Ghanbaja, L. Tibavizco, D. Petitjean, and A. Dufour. 2013. Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Applied Catalysis. B, Environmental 129:528–38. doi:10.1016/j.apcatb.2012.09.043.
  • Olcese, R. N., M. Bettahar, D. Petitjean, B. Malaman, F. Giovanella, and A. Dufour. 2012. Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst. Applied Catalysis. B, Environmental 115-116:63–73. doi:10.1016/j.apcatb.2011.12.005.
  • Pourzolfaghar, H., F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua. 2018. Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds: A review. Journal of Analytical and Applied Pyrolysis 133:117–27. doi:10.1016/j.jaap.2018.04.013.
  • Prasomsri, T., M. Shetty, K. Murugappan, and Y. Román-Leshkov. 2014. Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures. Energy & Environmental Science 7 (8):2660–69. doi:10.1039/c4ee00890a.
  • Rensel, D. J., S. Rouvimov, M. E. Gin, and J. C. Hicks. 2013. Highly selective bimetallic FeMoP catalyst for C-O bond cleavage of aryl ethers. Journal of Catalysis 305:256–63. doi:10.1016/j.jcat.2013.05.026.
  • Rodríguez-Aguado, E., A. Infantes-Molina, D. Ballesteros-Plata, J. Cecila, I. Baroso-Martin, and E. Rodríguez-Castellón. 2017. Ni and Fe mixed phosphides catalysts for O-removal of a bio-oil model molecule from lignocellulosic biomass. Molecular Catalysis 437:130–39. doi:10.1016/j.mcat.2017.05.008.
  • Ruddy, D. A., J. A. Schaidle, J. R. I. Ferrell, J. Wang, L. Moens, and J. E. Hensley. 2014. Cheminform abstract: Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: Catalyst development through the study of model compounds. Green Chemistry 16:454–90. doi:10.1039/C3GC41354C.
  • Saidi, M., F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B. C. Gates, and M. R. Rahimpour. 2013. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy & Environmental Science 7 (1):103–29. doi:10.1039/C3EE43081B.
  • Shi, Y., E. Xing, K. Wu, J. Wang, M. Yang, and Y. Wu. 2017. Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts. Catalysis Science & Technology 7 (12):2385–415. doi:10.1039/C7CY00574A.
  • Shumeiko, B., K. Schlackl, and D. Kubička. 2019. Hydrogenation of bio-oil model compounds over Raney-Ni at ambient pressure. Catalysts 9 (3):268. doi:10.3390/catal9030268.
  • Yu, Z., Y. Wang, Z. Sun, X. Li, A. Wang, D. M. Camaioni, and J. A. Lercher. 2018. Ni3P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds. Green Chemistry 20:609–19. doi:10.1039/C7GC03262E.
  • Zhang, S., H. Zhang, X. Liu, S. Zhu, L. Hu, and Q. Zhang. 2018. Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified zsm-5 zeolite catalyst. Fuel Processing Technology 175:17–25. doi:10.1016/j.fuproc.2018.03.002.
  • Zhao, C., D. M. Camaioni, and J. A. Lercher. 2012. Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicylcoalkanes. Journal of Catalysis 288:92–103. doi:10.1016/j.jcat.2012.01.005.
  • Zhao, H. Y., D. Li, P. Bui, and S. T. Oyama. 2011. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Applied Catalysis. A, General 391 (1–2):305–10. doi:10.1016/j.apcata.2010.07.039.
  • Zheng, Y., F. Wang, X. Yang, Y. Huang, C. Liu, Z. Zheng, and J. Gu. 2017. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. Journal of Analytical and Applied Pyrolysis 126:169–79. doi:10.1016/j.jaap.2017.06.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.