414
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Modeling and optimization of biomethane production from solid-state anaerobic co-digestion of organic fraction municipal solid waste and other co-substrates

, , , ORCID Icon &
Received 06 Nov 2019, Accepted 06 May 2020, Published online: 22 May 2020

References

  • Abu Qdais, H., K. B. Hani, and N. Shatnawi. 2010. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resources, Conservation and Recycling 54 (6):359–63. doi:10.1016/j.resconrec.2009.08.012.
  • Awe, O. W., Y. Zhao, A. Nzihou, D. P. Minh, and N. Lyczko. 2017. A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valor 8 (2):267–83. doi:10.1007/s12649-016-9826-4.
  • Belle, A. J., S. Lansing, W. Mulbry, and R. R. Weil. 2015. Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters. Bioresource Technology 178:230–37. doi:10.1016/j.biortech.2014.09.036.
  • Beltramo, T., C. Ranzan, J. Hinrichs, and B. Hitzmann. 2016. Artificial neural network prediction of the biogas flow rate optimized with an ant colony algorithm. Biosystems Engineering 143:68–78. doi:10.1016/j.biosystemseng.2016.01.006.
  • Betiku, E., S. S. Okunsolawo, S. O. Ajala, and O. S. Odedele. 2015. Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter. Renewable Energy 76:408–17. doi:10.1016/j.renene.2014.11.049.
  • Borowski, S., J. Domanski, and L. Weatherley. 2014. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge. Waste Management 34:513–21. doi:10.1016/j.wasman.2013.10.022.
  • Brown, D., and Y. Li. 2013. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology 127:275–80. doi:10.1016/j.biortech.2012.09.081.
  • Ebrahimi-Nik, M., A. Heidari, S. Ramezaniazghandi, F. Asadi Mohammadi, and H. Younesi. 2018. Drinking water treatment sludge as an effective additive for biogas production from food waste; kinetic evaluation and biomethane potential test. Bioresource Technology 260:421–26. doi:10.1016/j.biortech.2018.03.112.
  • Grosser, A. 2017. Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tests and semi-continuous trial results. Energy. doi:10.1016/j.energy.2017.11.010.
  • Gueguim Kana, E. B., J. K. Oloke, A. Lateef, and M. O. Adesiyan. 2012. Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renewable Energy 46:276–81. doi:10.1016/j.renene.2012.03.027.
  • Guwy, A. J., F. R. Hawkes, S. J. Wilcox, and D. L. Hawkes. 1997. Neural network and on-off control of bicarbonate alkalinity in a fluidised-bed anaerobic digester. Water Research 31 (8):2019–25. doi:10.1016/S0043-1354(97)00016-X.
  • Holubar, P., L. Zani, M. Hager, W. Fröschl, Z. Radak, and R. Braun. 2002. Advanced controlling of anaerobic digestion by means of hierarchical neural networks. Water Research 36:2582–88. doi:10.1016/S0043-1354(01)00487-0.
  • Holubar, P., L. Zani, M. Hager, W. Fröschl, Z. Radak, and R. Braun. 2003. Start-up and recovery of a biogas-reactor using a hierarchical neural network-based control tool. Journal of Chemical Technology & Biotechnology 78 (8):847–54. doi:10.1002/jctb.854.
  • Jacob, S., and R. Banerjee. 2016. Modeling and optimization of anaerobic co-digestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm. Bioresource Technology 214:386–95. doi:10.1016/j.biortech.2016.04.068.
  • Li, J., L. Wei, Q. Duan, G. Hu, and G. Zhang. 2014. Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production. Bioresource Technology 156:307–13. doi:10.1016/j.biortech.2014.01.064.
  • Liao, X., S. Zhu, D. Zhong, J. Zhu, and L. Li. 2014. Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors. Waste Management 34 (11):2278–84. doi:10.1016/j.wasman.2014.06.014.
  • Mahanty, B., M. Zafar, and H. S. Park. 2013. Characterization of co-digestion of industrial sludges for biogas production by artificial neural network and statistical regression models. Environmental Technology 34:2145–53. doi:10.1080/09593330.2013.819022.
  • Marousek, J., S. Haskova, R. Zeman, J. Vachal, and R. Vanıckova. 2014. Nutrient management in processing of steam-exploded lignocellulose phytomass. Chemical Engineering & Technology 37 (11):1–5. doi:10.1002/ceat.201400341.
  • Marousek, J., V. Stehel, M. Vochozka, A. Marouskova, and L. Kolar. 2018. Postponing of the intracellular disintegration step improves efficiency of phytomass processing. Journal of Cleaner Production 199:173–76. doi:10.1016/j.jclepro.2018.07.183.
  • Marousek, J., Y. Kondo, M. Ueno, and Y. Kawamitsu. 2013. Commercial-scale utilization of greenhouse residues. Biotechnology and Applied Biochemistry. doi:10.1002/bab.1055.
  • Montañés, R., R. Solera, and M. Pérez. 2015. Anaerobic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: Effect of temperature. Bioresource Technology 180:177–84. doi:10.1016/j.biortech.2014.12.056.
  • Musthafa, M. M. 2018. Biogas production and its application in compressed gas. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (4):427–31. doi:10.1080/15567036.2017.1422055.
  • Negi, S., H. Dhar, A. Hussain, and S. Kumar. 2018. Biomethanation potential for co-digestion of municipal solid waste and rice straw. A Batch Study. Bioresource Technology 254:139–44. doi:10.1016/j.biortech.2018.01.070.
  • Ngusale, G. K., M. Oloko, S. Agong, and B. Nyakinya. 2017. Energy recovery from municipal solid waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (16):1807–14. doi:10.1080/15567036.2017.1376007.
  • Nielfa, A., R. Cano, and M. Fdz-Polanco. 2015. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnology Reports 5:14–21. doi:10.1016/j.btre.2014.10.005.
  • Ozkaya, B., A. Demir, and M. S. Bilgili. 2007. Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environmental Modelling and Software 22 (6):815–22. doi:10.1016/j.envsoft.2006.03.004.
  • Pavi, S., L. E. Kramer, L. P. Gomes, and L. A. S. Miranda. 2017. Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource Technology 228:362–67. doi:10.1016/j.biortech.2017.01.003.
  • Rohani, A., M. H. Abbaspour-Fard, and S. Abdolahpour. 2011. Prediction of tractor repair and maintenance costs using artificial neural network. Expert Systems with Applications 38:8999–9007. doi:10.1016/j.eswa.2011.01.118.
  • Ruan, J., X. Chen, M. Huang, and T. Zhang. 2017. Application of fuzzy neural networks for modeling of biodegradation and biogas production in a full-scale internal circulation anaerobic reactor. Journal of Environmental Science and Health, Part A 52(1), 7–14.
  • Sathish, S., and S. Vivekanandan. 2016. Parametric optimization for floating drum anaerobic bio-digester using response surface methodology and artificial neural network. Alexandria Engineering Journal 55 (4):3297–307. doi:10.1016/j.aej.2016.08.010.
  • Shah, F. A., Q. Mahmood, N. Rashid, A. Pervez, I. A. Raja, and M. M. Shah. 2015. Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renewable and Sustainable Energy Reviews 42:627–42. doi:10.1016/j.rser.2014.10.053.
  • Singh, M., and G. Leena. 2019. Forecasting of waste-to-energy system: A case study of Faridabad, India. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1587078.
  • Strik, D. P. B. T. B., A. M. Domnanovich, L. Zani, R. Braun, and P. Holubar. 2005. Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB neural network toolbox. Environmental Modelling and Software 20:803–10. doi:10.1016/j.envsoft.2004.09.006.
  • Surendra, K. C., D. Takara, A. G. Hashimoto, and S. K. Khanal. 2014. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews 31:846–59. doi:10.1016/j.rser.2013.12.015.
  • Thomas, P., and N. Soren. 2017. The efficacy of an anaerobic digester-based biogas production from various feedstocks. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (13):1416–24. doi:10.1080/15567036.2017.1336817.
  • Wang, L., F. Shen, H. Yuan, D. Zou, Y. Liu, B. Zhu, and X. Li. 2014. Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies. Waste Management 34 (12):2627–33. doi:10.1016/j.wasman.2014.08.005.
  • Wang, X., L. Zhang, B. Xi, W. Sun, X. Xia, C. Zhu, X. He, M. Li, T. Yang, P. Wang, et al. 2015. Biogas production improvement and C/N control by natural clinoptilolite addition into anaerobic co-digestion of phragmites australis, feces and kitchen waste. Bioresource Technology 180:192–99. doi:10.1016/j.biortech.2014.12.023.
  • Wilawana, W., P. Pholchan, and P. Aggarangsi. 2014. Biogas production from co-digestion of pennisetum pururem cv. pakchong 1 grass and layer chicken manure using completely stirred tank. Energy Procedia 52:216–22. doi:10.1016/j.egypro.2014.07.072.
  • Zareei, S., and J. Khodaei. 2017. Modeling and optimization of biogas production from cow manure and maize straw using an adaptive neuro-fuzzy inference system. Renewable Energy 114:423–27. doi:10.1016/j.renene.2017.07.050.
  • Zhang, W., L. Zhang, and A. Li. 2015. Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: Process performance and synergistic effects. Chemical Engineering Journal 259:795–805. doi:10.1016/j.cej.2014.08.039.
  • Zhanga, W., Q. Wei, S. Wu, D. Qi, W. Li, Z. Zuo, and R. Dong. 2014. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Applied Energy 128:175–83. doi:10.1016/j.apenergy.2014.04.071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.