181
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Prediction and control of hydraulic fracture trajectory in enhanced geothermal system

, ORCID Icon, &
Received 16 Oct 2019, Accepted 04 Jun 2020, Published online: 23 Jun 2020

References

  • Broek, D. 1986. Elementary engineering fracture mechanics(4th ed) [M]. Martinus Nijhoff, Boston .
  • Budyn E., Zi G., Moës N., et al. 2004. A method for multiple fracture growth in brittle materials without remeshing[J]. International journal for numerical methods in engineering, 61(10): 1741–1770.
  • C E, R., and D. D. Pollard. 1994. Numerical simulation of fracture set formation: A fracture mechanics model consistent with experimental observations [J]. Journal of Geophysical Research: Solid Earth 99 (B5):9359–72. doi:10.1029/94JB00139.
  • Crouch, S. L. 1976. Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite Body solution[J]. International Journal for Numerical Methods in Engineering 10 (2):301–43.
  • Demirbas, A. H. 2008. Global Geothermal Energy Scenario by 2040 [J]. Energy Sources, Part A 30 (20):1890–95. doi:10.1080/15567030701468027.
  • Duchane, D., and D. Brown. 2002. Hot dry rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico [J]. Geo-Heat Centre Quarterly Bulletin , Cite-seer, 23: 13–19.
  • Elbel, J L., A R. Piggott, and M. G. Mack. 1992. Numerical modeling of multilayer fracture treatments [C]. In Permian Basin Oil and Gas Recovery Conference. Society of Petroleum Engineers.
  • Gu, H., X. Weng, L. J B, M. G. Mack, U. Ganguly, and R. Suarez-Rivera. 2012. Hydraulic fracture crossing natural fracture at nonorthogonal angles: A criterion and its validation [J]. SPE Production & Operations. 27(1):20–26. doi:10.2118/139984-PA.
  • Guo, T., F. Gong, L. Shen, Z. Qu, N. Qi, and T. Wang. 2019a. Multi-fractured stimulation technique of hydraulic fracturing assisted by radial slim holes [J]. Journal of Petroleum Science and Engineering 174:572–83. doi:10.1016/j.petrol.2018a.11.064.
  • Guo, T., X. Wang, Z. Li, et al. 2019b. Numerical simulation study on fracture propagation of zipper and synchronous fracturing in hydrogen energy development [J]. International Journal of Hydrogen Energy. 44(11):5270–85.
  • Häring, M O., U. Schanz, F. Ladner, and B. C. Dyer. 2008. Characterisation of the Basel 1 enhanced geothermal system [J]. Geothermics. 37(5):469–95. doi:10.1016/j.geothermics.2008.06.002.
  • He, P., and D. Zhou. 2016. Laws of the fracture propagation for the simultaneous fracturing [J]. In Petroleum geology & oilfield development in Daqing. 035(004):102-108.
  • Howard, G C., and C. R. Fast. 1957. Optimum fluid characteristics for fracture extension [C]//drilling and production practice. New York, NY: American Petroleum Institute.
  • Jacobs, T. 2017. Frac hits reveal well spacing may be too tight, completion volumes too large [J]. Journal of Petroleum Technology 69 (11):35–38. doi:10.2118/1117-0035-JPT.
  • Jung, R. 2013. EGS–Goodbye or back to the future, in Proceedings of International Society for Rock Mechanics (ISRM) International Conference for Effective and Sustainable Hydraulic Fracturing [J]. Brisbane, Australia.
  • Kresse, O., X. Weng, H. Gu, and R. Wu. 2013. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations [J]. Rock Mechanics and Rock Engineering. 46(3):555–68. doi:10.1007/s00603-012-0359-2.
  • Li, Q., Y. Li, Y. Cheng, Q. Li, F. Wang, J. Wei, Y. Liu, C. Zhang, B. Song, C. Yan, et al. 2018. Numerical simulation of fracture reorientation during hydraulic fracturing in perforated horizontal well in shale reservoirs [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 40(15):1807–13. doi:10.1080/15567036.2018.1486920.
  • Li, X G., L P. Yi, and Z. Z. Yang. 2017. Numerical model and investigation of simultaneous multiple-fracture propagation within a stage in horizontal well [J]. Environmental Earth Sciences 76 (7):273. doi:10.1007/s12665-017-6579-8.
  • Li, Y., C. Ai, and B. Zhang. 2013. Influence of synchronous volume fracturing on interwell fracture characteristics [J]. Fault-Block Oil & Gas Field.20(6):779–782..
  • Liu, J., Z. Wang, W. Shi, and X. Tan. 2020. Experiments on the thermally enhanced permeability of tight rocks: A potential thermal stimulation method for enhanced geothermal systems [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–14. doi:10.1080/15567036.2020.1745332.
  • Olson, J. E. 2004. Predicting fracture swarms—The influence of subcritical fracture growth and the fracture-tip process zone on joint spacing in rock [J]. Geological Society, London, Special Publications 231 (1):73–88. doi:10.1144/GSL.SP.2004.231.01.05.
  • Olson, J. E. 2007. Fracture aperture, length and pattern geometry development under biaxial loading: A numerical study with applications to natural, cross-jointed systems [J]. Geological Society, London, Special Publications 289 (1):123–42. doi:10.1144/SP289.8.
  • Paryani, M., R. Smaoui, and S. Poludasu. 2017. Adaptive fracturing to avoid frac hits and interference: A Wolfcamp shale case study [C]//SPE Unconventional Resources Conference, Calgary, Alberta, Canada. Society of Petroleum Engineers.
  • Qiu, Z., J. Li, H. Zhong, X. Zhao, and W. Huang. 2019. Parametric study of fracture interference effects on fracture geometry for wellbore strengthening [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–18. doi:10.1080/15567036.2019.1633445.
  • Ren, L., Y. Tao, and J. Zhao. 2015. Simultaneous hydraulic fracturing field tests in ultra-low permeability sandstone reservoirs of Changqing Oilfield [J]. Chinese Journal of Rock Mechanics and Engineering 34 (2):330–39.
  • Sausse J., and Genter A. 2005. Types of permeable fractures in granite[J]. Geological Society, London, Special Publications, 240(1): 1–14.
  • Schlicting, H. 1968. Boundary-Layer theory. 6th ed. New York, NY: McGraw-Hill.
  • Song, Y., T J Lee, and J. Jeon. 2015. Background and progress of the Korean EGS pilot project [C]. Proceedings World Geothermal Congress. Melbourne, Australia, 19–25.
  • Tester, J W., and B. J. Anderson. 2006. Impact of enhanced geothermal systems (EGS) on the United States in the 21st century [R]. In The future of geothermal energy. Massachusetts Institute of Technology. 232–48 .
  • Tischner, T., M. Schindler, and R. Jung. 2007. HDR project Soultz: Hydraulic and seismic observations during stimulation of the 3 deep wells by massive water injections [C]. Proceedings, 32nd workshop on Geothermal Engineering, Stanford University. Stanford, California, 22–24.
  • Valko, P., and M. J. Economides. 1995. Hydraulic fracture mechanics [M]. New York: Wiley.
  • Weber, J., B. Ganz, and R. Schellschmidt. 2015. Geothermal energy use in Germany [C]. Proceedings World Geothermal Congress, Melbourn, 19–24.
  • Weng, X., O. Kresse, C. C E, R. et al. 2011. Modeling of hydraulic fracture network propagation in a naturally fractured formation [J]. SPE Production & Operations. 26(4):368–80. doi:10.2118/140253-PA.
  • Wu, K. 2014. Numerical modeling of complex hydraulic fracture development in unconventional reservoirs [D].The University of Texas at Austin.
  • Xu, W., J. Zhao, S. S. Rahman, et al. 2018. A comprehensive model of a hydraulic fracture interacting with a natural fracture: Analytical and numerical solution [J]. Rock Mechanics and Rock Engineering.52 (4): 1095–1113.
  • Yoshimitsu Okada. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75 (2):1018–1040.
  • Zhang, G., H. Lu, and W. Zhao. 2014. Branch fractures in oriented hydraulic fracturing, modeling, and experiments [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (5):563–73. doi:10.1080/15567036.2010.544005.
  • Zhang, Y., L H. Pan, and T. Zhou. 2015. A study of hydraulic fracture propagation for shale fracturing [J]. Science Technology and Engineering 15 (5):11–16.
  • Ziagos, J., B R. Phillips, and L. Boyd. 2013. A technology roadmap for strategic development of enhanced geothermal systems [C]. Proceedings of the 38th Workshop on Geothermal Reservoir Engineering, 11–13. Stanford, CA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.