209
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of conocarpus wastes and common reed biochars as a predictor of potential environmental and agronomic applications

, , &
Received 30 Oct 2019, Accepted 09 Jun 2020, Published online: 24 Jun 2020

References

  • Agamuthu, P. 2009. Challenges and opportunities in agro-waste management: An Asian perspective. InInaugural meeting of first regional 3R forum in Asia, Tokyo, Japan, 11–12.
  • Ahmad, M., S. S. Lee, X. Dou, D. Mohan, J. K. Sung, J. E. Yang, and Y. S. Ok. 2012. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology 118:536–44. doi:10.1016/j.biortech.2012.05.042.
  • Al-Wabel, M. I., A. Al-Omran, A. H. El-Naggar, M. Nadeem, and A. R. Usman. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology 131:374–79. doi:10.1016/j.biortech.2012.12.165.
  • Bera, T., T. J. Purakayastha, A. K. Patra, and S. C. Datta. 2018. Comparative analysis of physicochemical, nutrient, and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures. Journal of Material Cycles and Waste Management 20 (2):1115–27. doi:10.1007/s10163-017-0675-4.
  • Cantrell, K. B., P. G. Hunt, M. Uchimiya, J. M. Novak, and K. S. Ro. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology 107:419–28. doi:10.1016/j.biortech.2011.11.084.
  • Cao, T., F. W. Chen, and J. Meng. 2018. Influence of pyrolysis temperature and residence time on available nutrients for biochars derived from various biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (4):413–19. doi:10.1080/15567036.2016.1225137.
  • Cao, X., and W. Harris. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology 101 (14):5222–28. doi:10.1016/j.biortech.2010.02.052.
  • Chan, K. Y., and Z. Xu. 2012. Biochar: Nutrient properties and their enhancement. Chapter 5. In Lehmann, J., Joseph, S. (eds) Biochar for environmental management: science and technology, Earhscan, London, UK, 99–116.
  • Chen, B., D. Zhou, and L. Zhu. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology 42 (14):5137–43. doi:10.1021/es8002684.
  • Chen, Y., H. Yang, X. Wang, S. Zhang, and H. Chen. 2012. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresource Technology 107:411–18. doi:10.1016/j.biortech.2011.10.074.
  • Domingues, R. R., P. F. Trugilho, C. A. Silva, I. C. N. de Melo, L. C. Melo, Z. M. Magriotis, and M. A. Sánchez-Monedero. 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS One 12 (5):e0176884. doi:10.1371/journal.pone.0176884.
  • Downie, A., A. Crosky, and P. Munroe. 2012. Physical properties of biochar. In Lehman, J., J., Joseph, S. (Eds.) Biochar for environmental management: science and technology, Earthscan, London, UK, 45–64.
  • Fernández-Gonzalez, J. M., A. L. Grindlay, F. Serrano-Bernardo, M. I. Rodríguez-Rojas, and M. Zamorano. 2017. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities. Waste Management 67:360–74. doi:10.1016/j.wasman.2017.05.003.
  • Ferreira, S. D., C. Manera, W. P. Silvestre, G. F. Pauletti, C. R. Altafini, and M. Godinho. 2019. Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste and Biomass Valorization 10 (10):3089–100. doi:10.1007/s12649-018-0347-1.
  • Gaskin, J. W., C. Steiner, K. Harris, K. C. Das, and B. Bibens. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51 (6):2061–69. doi:10.13031/2013.25409.
  • Glaser, B., Haumaier, L., Guggenberger, G. and Zech, W., 2001. The'Terra Preta'phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88(1): 37–41.
  • Głuszek, S., L. Sas-Paszt, B. Sumorok, and R. Kozera. 2017. Biochar-Rhizosphere interactions–a review. Polish Journal of Microbiology 66 (2):151–61. doi:10.5604/01.3001.0010.6288.
  • Gondek, K., M. Mierzwa-Hersztek, A. Baran, M. Szostek, R. Pieniążek, M. Pieniążek, J. Stanek-Tarkowska, and T. Noga. 2017. The effect of low-temperature conversion of plant materials on the chemical composition and ecotoxicity of biochars. Waste and Biomass Valorization 8 (3):599–609. doi:10.1007/s12649-016-9621-2.
  • Gong, Y. P., Z. Y. Ni, Z. Z. Xiong, L. H. Cheng, and X. H. Xu. 2017. Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation. Environmental Science and Pollution Research 24 (9):8326–35. doi:10.1007/s11356-017-8499-2.
  • Guo, Y., and D. A. Rockstraw. 2007. Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials 100 (1–3):12–19. doi:10.1016/j.micromeso.2006.10.006.
  • Karimi, A., A. Moezzi, M. Chorom, and N. Enayatizamir. 2019. Chemical fractions and availability of Zn in a calcareous soil in response to biochar amendments. Journal of Soil Science and Plant Nutrition 19 (4):851–64. doi:10.1007/s42729-019-00084-1.
  • Karimi, A., A. Moezzi, M. Chorom, and N. Enayatizamir. 2020. Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition 20 (2):450–59. doi:10.1007/s42729-019-00129-5.
  • Kloss, S., F. Zehetner, A. Dellantonio, R. Hamid, F. Ottner, V. Liedtke, M. Schwanninger, M. H. Gerzabek, and G. Soja. 2012. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality 41 (4):990–1000. doi:10.2134/jeq2011.0070.
  • Krishna, B. B., B. Biswas, J. Kumar, R. Singh, and T. Bhaskar. 2016. Role of reaction temperature on pyrolysis of cotton residue. Waste and Biomass Valorization 7 (1):71–78. doi:10.1007/s12649-015-9440-x.
  • Laird, D., P. Fleming, B. Wang, R. Horton, and D. Karlen. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158 (3–4):436–42. doi:10.1016/j.geoderma.2010.05.012.
  • Lawrinenko, M., and D. A. Laird. 2015. Anion exchange capacity of biochar. Green Chemistry 17 (9):4628–36. doi:10.1039/C5GC00828J.
  • Lehmann, J., and S. Joseph. 2015. Biochar for environmental management: An introduction. In Lehman, J., Joseph, S. (Eds.) Biochar for environmental management: science and technology, Earhscan, London, UK, 33–46.
  • Mardoyan, A., and P. Braun. 2015. Analysis of Czech subsidies for solid biofuels. International Journal of Green Energy 12 (4):405–08. doi:10.1080/15435075.2013.841163.
  • Maroušek, J. 2014. Economically oriented process optimization in waste management. Environmental Science and Pollution Research 21 (12):7400–02. doi:10.1007/s11356-014-2688-z.
  • Maroušek, J., O. Strunecký, and V. Stehel. 2019. Biochar farming: Defining economically perspective applications. Clean Technologies and Environmental Policy 21: 1389–1395.
  • Maroušek, J., P. Bartoš, M. Filip, L. Kolář, P. Konvalina, A. Maroušková, J. Moudrý, J. Peterka, J. Šál, M. Šoch, et al. 2020a. Advances in the agrochemical utilization of fermentation residues reduce the cost of purpose-grown phytomass for biogas production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11. doi: 10.1080/15567036.2020.1738597
  • Maroušek, J., Z. Rowland, K. Valášková, and P. Král. 2020b. Techno-economic assessment of potato waste management in developing economies. Clean Technologies and Environmental Policy 22: 937–944.
  • Moradi-Choghamarani, F., A. A. Moosavi, and M. Baghernejad. 2019. Determining organo-chemical composition of sugarcane bagasse-derived biochar as a function of pyrolysis temperature using proximate and Fourier transform infrared analyses. Journal of Thermal Analysis and Calorimetry 1–12. doi:10.1007/s10973-019-08186-9.
  • Mukherjee, A., A. R. Zimmerman, and W. Harris. 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163 (3–4):247–55. doi:10.1016/j.geoderma.2011.04.021.
  • Najafi, G., B. Ghobadian, T. Tavakoli, and T. Yusaf. 2009. Potential of bioethanol production from agricultural wastes in Iran. Renewable and Sustainable Energy Reviews 13 (6–7):1418–27. doi:10.1016/j.rser.2008.08.010.
  • Novak, J. M., I. Lima, B. Xing, J. W. Gaskin, C. Steiner, K. C. Das, M. Ahmedna, D. Rehrah, D. W. Watts, W. J. Busscher, et al. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science 3: 195–206.
  • Pariyar, P., K. Kumari, M. K. Jain, and P. S. Jadhao. 2020. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Science of the Total Environment 136433. doi:10.1016/j.scitotenv.2019.136433.
  • Pignatello, J. J., S. Kwon, and Y. Lu. 2006. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): Attenuation of surface activity by humic and fulvic acids. Environmental Science & Technology 40 (24):7757–63. doi:10.1021/es061307m.
  • Qi, F., Z. Dong, D. Lamb, R. Naidu, N. S. Bolan, Y. S. Ok, C. Liu, N. Khan, M. A. H. Johir, and K. T. Semple. 2017. Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere 180:564–73. doi:10.1016/j.chemosphere.2017.04.014.
  • Qin, L., Y. Shao, Z. Hou, and E. Jiang. 2019. Effect of temperature on the physicochemical characteristics of pine nut shell pyrolysis products in a screw reactor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi: 10.1080/15567036.2019.1618993
  • Ren, X. Y., Z. T. Zhang, W. L. Wang, H. Si, X. Wang, and J. M. Chang. 2013. Transformation and products distribution of moso bamboo and derived components during pyrolysis. BioResources 8 (3):3685–98. doi:10.15376/biores.8.3.3685-3698.
  • Siddiqui, M. T., S. Nizamuddin, H. A. Baloch, N. M. Mubarak, M. M. Tunio, S. Riaz, K. Shirin, Z. Ahmed, and M. Hussain. 2018. Thermogravimetric pyrolysis for neem char using novel agricultural waste: A study of process optimization and statistical modeling. Biomass Conversion and Biorefinery 8 (4):857–71. doi:10.1007/s13399-018-0336-4.
  • Singh, B., M. Camps-Arbestain, and J. Lehmann, Eds.. 2017. Biochar: A guide to analytical methods. Boca Raton, FL: CSIROPublishing.
  • Singh, B. P., B. J. Hatton, B. Singh, A. L. Cowie, and A. Kathuria. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality 39 (4):1224–35. doi:10.2134/jeq2009.0138.
  • Sohi, S. P., E. Krull, E. Lopez-Capel, and R. Bol. 2010. A review of biochar and its use and function in soil. In Advances in agronomy, vol. 105, 47–82. Burlington: Academic Press.
  • Spokas, K. A. 2010. Review of the stability of biochar in soils: Predictability of O: C molar ratios. Carbon Management 1 (2):289–303. doi:10.4155/cmt.10.32.
  • Suman, S., D. S. Panwar, and S. Gautam. 2017c. Surface morphology properties of biochars obtained from different biomass waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (10):1007–12. doi:10.1080/15567036.2017.1283553.
  • Suman, S., and S. Gautam. 2017a. Effect of pyrolysis time and temperature on the characterization of biochars derived from biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (9):933–40. doi:10.1080/15567036.2016.1276650.
  • Suman, S., and S. Gautam. 2017b. Pyrolysis of coconut husk biomass: Analysis of its biochar properties. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (8):761–67. doi:10.1080/15567036.2016.1263252.
  • Tan, Z., J. Zou, L. Zhang, and Q. Huang. 2018. Morphology, pore size distribution, and nutrient characteristics in biochars under different pyrolysis temperatures and atmospheres. Journal of Material Cycles and Waste Management 20 (2):1036–49. doi:10.1007/s10163-017-0666-5.
  • Tomczyk, A., Z. Sokołowska, and P. Boguta. 2020. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology 19: 191–215.
  • Vochozka, M., A. Maroušková, J. Váchal, and J. Straková. 2016. The economic impact of biochar use in Central Europe. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (16):2390–96. doi:10.1080/15567036.2015.1072600.
  • Wang, P., J. Zhang, Q. Shao, and G. Wang. 2018. Physicochemical properties evolution of chars from palm kernel shell pyrolysis. Journal of Thermal Analysis and Calorimetry 133 (3):1271–80. doi:10.1007/s10973-018-7185-z.
  • Zelazny, L. W., L. He, and A. N. Vanwormhoudt. 1996. Charge analysis of soils and anion exchange. Part 3 In: Sparks, D.L. (ed.), Methods of Soil Analysis :Chemical Methods. Soil science society of America, Madison, WI, 1231–53.
  • Zhang, J., J. Liu, and R. Liu. 2015. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresource Technology 176:288–91. doi:10.1016/j.biortech.2014.11.011.
  • Zhang, Y., Z. Ma, Q. Zhang, J. Wang, Q. Ma, Y. Yang, X. Luo, and W. Zhang. 2017. Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources 12 (3):4652–69. doi:10.15376/biores.12.3.4652-4669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.