157
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Production of hydrogen and multi-walled carbon nanotubes by ethanol decomposition over Fe/CeO2 catalysts

, , &

References

  • Acar, C., I. Dincer, and G. F. Naterer. 2016. Review of photocatalytic water‐splitting methods for sustainable hydrogen production. International Journal of Energy Research 40:1449–73.
  • Balat, M. 2008. Possible methods for hydrogen production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31 (1):39–50. doi:10.1080/15567030701468068.
  • Balat, M. 2010. Thermochemical routes for biomass-based hydrogen production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32 (15):1388–98. doi:10.1080/15567030802706796.
  • Carrasco-Marín, F., A. Mueden, and C. Moreno-Castilla. 1998. Surface-treated activated carbons as catalysts for the dehydration and dehydrogenation reactions of ethanol. The Journal of Physical Chemistry B 102 (46):9239–44. doi:10.1021/jp981861l.
  • Chen, R., Y. Xie, Y. Zhou, J. Wang, and H. Wang. 2014. Production of hydrogen-rich gas and multi-walled carbon nanotubes from ethanol decomposition over molybdenum modified Ni/MgO catalysts. Journal of Energy Chemistry 23 (2):244–50. doi:10.1016/S2095-4956(14)60142-X.
  • Christensen, C. H., T. Johannessen, R. Z. Sørensen, and J. K. Nørskov. 2006. Towards an ammonia-mediated hydrogen economy? Catalysis Today 111 (1–2):140–44. doi:10.1016/j.cattod.2005.10.011.
  • Hou, T., B. Yu, S. Zhang, T. Xu, D. Wang, and W. Cai. 2015. Hydrogen production from ethanol steam reforming over Rh/CeO2 catalyst. Catalysis Communications 58:137–40. doi:10.1016/j.catcom.2014.09.020.
  • Hussain, C. M., C. Saridara, and S. Mitra. 2010. Self-assembly of carbon nanotubes via ethanol chemical vapor deposition for the synthesis of gas chromatography columns. Analytical Chemistry 82 (12):5184–88. doi:10.1021/ac100428m.
  • Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354 (6348):56. doi:10.1038/354056a0.
  • Iijima, S., and T. Ichihashi. 1993. Single-shell carbon nanotubes of 1-nm diameter. Nature 363 (6430):603. doi:10.1038/363603a0.
  • Kırtay, E. 2011. Recent advances in production of hydrogen from biomass. Energy Conversion and Management 52 (4):1778–89. doi:10.1016/j.enconman.2010.11.010.
  • Li, C., K. Yao, and J. Liang. 2004. Study on the features of multiwalled carbon nanotube supported nickel aluminum mixed oxides. Applied Catalysis A, General 261 (2):221–24. doi:10.1016/j.apcata.2003.11.007.
  • Li, W., H. Wang, Z. Ren, G. Wang, and J. Bai. 2008. Co-production of hydrogen and multi-wall carbon nanotubes from ethanol decomposition over Fe/Al2O3 catalysts. Applied Catalysis B: Environmental 84 (3–4):433–39. doi:10.1016/j.apcatb.2008.04.026.
  • Li, Y., B. Zhang, X. Tang, Y. Xu, and W. Shen. 2006. Hydrogen production from methane decomposition over Ni/CeO2 catalysts. Catalysis Communications 7 (6):380–86. doi:10.1016/j.catcom.2005.12.002.
  • Liu, C., S. Li, D. Then, Y. Xiao, T. Li, and W. Wang. 2019. Hydrogen-rich syngas production by chemical looping steam reforming of acetic acid as bio-oil model compound over Fe-doped LaNiO3 oxygen carriers. International Journal of Hydrogen Energy 44:17732–41. doi:10.1016/j.ijhydene.2019.05.148.
  • Liu, K., Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan, K. Jiang. 2010. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 4 (10):5827–34. doi: 10.1021/nn1017318.
  • Nabgan, W., T. A. Tuan Abdullah, R. Mat, B. Nabgan, Y. Gambo, M. Ibrahim, A. Ahmad, A. A. Jalil, S. Triwahyono, I. Saeh, et al. 2017. Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: An overview. Renewable and Sustainable Energy Reviews 79:347–57. doi:10.1016/j.rser.2017.05.069.
  • Nikolaidis, P., and A. Poullikkas. 2017. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 67:597–611. doi:10.1016/j.rser.2016.09.044.
  • Ping, D., C. Wang, X. Dong, and Y. Dong. 2016. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition. Applied Surface Science 369:299–307. doi:10.1016/j.apsusc.2016.02.074.
  • Pudukudy, M., Z. Yaakob, and M. S. Takriff. 2015. Methane decomposition over Pd promoted Ni/MgAl2O4 catalysts for the production of COx free hydrogen and multiwalled carbon nanotubes. Applied Surface Science 356:1320–26. doi:10.1016/j.apsusc.2015.08.246.
  • Pudukudy, M., Z. Yaakob, and M. S. Takriff. 2016. Methane decomposition into COx free hydrogen and multiwalled carbon nanotubes over ceria, zirconia and lanthana supported nickel catalysts prepared via a facile solid state citrate fusion method. Energy Conversion and Management 126:302–15. doi:10.1016/j.enconman.2016.08.006.
  • Sadeghian, Z. 2009. Large-scale production of multi-walled carbon nanotubes by low-cost spray pyrolysis of hexane. New Carbon Materials 24 (1):33–38. doi:10.1016/S1872-5805(08)60034-7.
  • Scott, C. D., S. Arepalli, P. Nikolaev, and R. E. Smalley. 2001. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Applied Physics A 72 (5):573–80. doi:10.1007/s003390100761.
  • Shah, K. A., and B. A. Tali. 2016. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing 41:67–82. doi:10.1016/j.mssp.2015.08.013.
  • Shandakov, S. D., A. V. Kosobutsky, M. S. Rybakov, O. G. Sevostyanov, D. M. Russakov, M. V. Lomakin, A. I. Vershinina, I. M. Chirkova. 2018. Effect of gaseous and condensate products of ethanol decomposition on aerosol CVD synthesis of single-walled carbon nanotubes. Carbon 126:522–31. doi:10.1016/j.carbon.2017.10.064.
  • Sharma, S., and S. K. Ghoshal. 2015. Hydrogen the future transportation fuel: From production to applications. Renewable and Sustainable Energy Reviews 43:1151–58. doi:10.1016/j.rser.2014.11.093.
  • Shayan, E., V. Zare, and I. Mirzaee. 2018. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Conversion and Management 159:30–41. doi:10.1016/j.enconman.2017.12.096.
  • Shi, Z., Y. Lian, F. H. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue, S.-L. Zhang, et al. 2000. Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. Journal of Physics and Chemistry of Solids 61 (7):1031–36. doi: 10.1016/S0022-3697(99)00358-3.
  • Tsai, J. T., and A. A. Tseng. 2009. Defect reduction of multi-walled carbon nanotubes by rapid vacuum arc annealing. Journal of Experimental Nanoscience 4:87–93. doi:10.1080/17458080802512502.
  • Tsoufis, T., P. Xidas, L. Jankovic, D. Gournis, A. Saranti, T. Bakas, M. A. Karakassides. 2007. Catalytic production of carbon nanotubes over Fe–Ni bimetallic catalysts supported on MgO. Diamond and Related Materials 16 (1):155–60. doi: 10.1016/j.diamond.2006.04.014.
  • Wang, G., H. Wang, W. Li, Z. Ren, J. Bai, and J. Bai. 2011. Efficient production of hydrogen and multi-walled carbon nanotubes from ethanol over Fe/Al2O3 catalysts. Fuel Processing Technology 92 (3):531–40. doi:10.1016/j.fuproc.2010.11.008.
  • Wang, G., H. Wang, Z. Tang, W. Li, and J. Bai. 2009. Simultaneous production of hydrogen and multi-walled carbon nanotubes by ethanol decomposition over Ni/Al2O3 catalysts. Applied Catalysis B: Environmental 88 (1–2):142–51. doi:10.1016/j.apcatb.2008.09.008.
  • Wang, W., and Y. Wang. 2008. Thermodynamic analysis of steam reforming of ethanol for hydrogen generation. International Journal of Energy Research 32 (15):1432–43. doi:10.1002/er.1459.
  • Xue, L., C. Zhang, H. He, and Y. Teraoka. 2007. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Applied Catalysis B: Environmental 75 (3–4):167–74. doi:10.1016/j.apcatb.2007.04.013.
  • Ye, S., F. Luo, Q. Zhang, P. Zhang, T. Xu, Q. Wang, D. He, L. Guo, Y. Zhang, C. He, et al. 2019. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy & Environmental Science 12 (3):1000–07. doi: 10.1039/C8EE02888E.
  • Yong, Z., L. Fang, and Z. Zhi-Hua. 2011. Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition. Micron 42 (6):547–52. doi:10.1016/j.micron.2011.01.007.
  • Yu, D., K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen. 2014. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology 9 (7):555–62. doi: 10.1038/nnano.2014.93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.