262
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparison of Activated Carbons Produced from Zonguldak Kozlu and Zonguldak Karadon Hard Coals for Hydrogen Sorption

&
Received 31 Oct 2019, Accepted 02 Jul 2020, Published online: 22 Jul 2020

References

  • Akasaka, H., T. Takahata, I. Toda, H. Ono, S. Ohshio, S. Himeno, T. Kokubu, and H. Saitoh. 2011. Hydrogen storage ability of porous carbon material fabricated from coffee bean wastes. International Journal of Hydrogen Energy 36:580–85.
  • Al-Qaessi, F., and L. Abu-Farah. 2010. Activated Carbon Production from Date Stones Using Phosphoric Acid. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32 (14):1316–25.
  • Al-Qaessi, F. A. H. 2010. Production of Activated Carbon from Date Stones by Using Zinc Chloride. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32 (10):917–30. doi:10.1080/15567030903493062.
  • Arshad, S. H. M., N. Ngadi, A. A. Aziz, N. S. Amin, M. Jusoh, and S. Wong. 2016. Preparation of activated carbon from empty fruit bunch for hydrogen storage. Journal of Energy Storage 8:257–61. doi:10.1016/j.est.2016.10.001.
  • Awe, A. A., B. O. Opeolu, O. S. Fatoki, O. S. Ayanda, V. A. Jackson, and R. Snyman. 2020. Preparation and characterisation of activated carbon from Vitis vinifera leaf litter and its adsorption performance for aqueous phenanthrene, Appl. Biol. Chem. 63 (12):1–17. doi:10.1186/s13765-020-00494-1.
  • Bader, N., and A. Ouederni. 2016. Optimization of biomass-based carbon materials for hydrogen storage. Journal of Energy Storage 5:77–84. doi:10.1016/j.est.2015.12.009.
  • Baytar, O., Ö. Şahin, C. Saka, and S. Ağrak. 2018. Characterization of microwave and conventional heating on the pyrolysis of pistachio shells for the adsorption of methylene blue and iodine. Analytical Letters 51 (4):2205–20.
  • Cai, J., S. Bennici, J. Shen, and A. Auroux. 2015. The influence of metal- and N-species addition in mesoporous carbons on the hydrogen adsorption capacity. Materials Chemistry and Physics 161:142–52.
  • Chen, H., H. Wang, Z. Xue, L. Yang, Y. Xiao, M. Zheng, B. Lei, Y. Liu, and L. Sun. 2012. High hydrogen storage capacity of rice hull based porous carbon. International Journal of Hydrogen Energy 37 (24):18888–94. doi:10.1016/j.ijhydene.2012.09.035.
  • Chen, R., L. Li, Z. Liu, M. Lu, C. Wang, H. Li, W. Ma, and S. Wang. 2017. Preparation and characterization of activated carbons from tobacco stem by chemical activation. Journal of the Air & Waste Management Association 67 (6):713–24.
  • Cherik, D., and K. Louhab. 2017. Preparation of microporous activated carbon from date stones by chemical activation using zinc chloride, Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 39 (18):1935–41. doi:10.1080/15567036.2017.1390012.
  • Choi, Y. K., and S. J. Park. 2015. Preparation and characterization of sucrose-based microporous carbons for increasing hydrogen storage. Journal of Industrial and Engineering Chemistry 28:32–36.
  • Chu, X. Z., J. M. Xu, Y. J. Zhao, W. G. Zhang, Z. P. Chen, S. Y. Zhou, Y. P. Zhou, and L. Zhou. 2010. Monolayer adsorption behaviour of hydrogen isotopes on microporous and mesoporous molecular sieves. Journal of Chemical & Engineering Data 55:2512–16.
  • Erdogan, F. O., and T. Kopac. 2007. Dynamic analysis of sorption of hydrogen in activated carbon. International Journal of Hydrogen Energy 32:3448–56.
  • Erdogan, F. O., and T. Kopac. 2019a. Highly effective activated carbons from Turkish-Kozlu bituminous coal by physical and KOH activation and sorption studies with organic vapors. International Journal of Chemical Reactor Engineering 17 (5). doi: 10.1515/ijcre-2018-0071.
  • Erdogan, F. O., and T. Kopac. 2019b. Adsorption Behavior of Alcohol Vapors on Zonguldak-Karadon Coal Derived Porous Carbons. Energy Sources Part A: Recovery, Utilization and Environmental Effects. doi:10.1080/15567036.2019.1666191.
  • Erdogan, T., and F. Oguz Erdogan. 2016. Characterization of the adsorption of disperse yellow 211 on activated carbon from cherry Stones following microwave-assisted phosphoric acid treatment. Analytical Letters 49 (7):917–28.
  • Fierro, V., W. Zhao, M. T. Izquierdo, E. Aylon, and A. Celzard. 2010. Adsorption and compression contributions to hydrogen storage in activated anthracites. International Journal of Hydrogen Energy 35:9038–45.
  • Gregg, S. J., and K. S. W. Sing. 1982. Adsorption, surface area and porosity, 195–288. 2nd ed. London: Academic Press.
  • Hsu, L. Y., and H. Teng. 2000. Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Processing Technology 64:155–66.
  • İzgi, M. S., C. Saka, O. Baytar, G. Saraçoğlu, and Ö. Şahin. 2019. Preparation and Characterization of Activated Carbon from Microwave and Conventional Heated Almond Shells Using Phosphoric Acid Activation. Analytical Letters 52 (5):772–89.
  • Jauto, A. H., S. A. Memon, A. Channa, and A. H. Khoja. 2019. Efficient removal of cyanide from industrial effluent using acid treated modified surface activated carbon. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (22):2715–24. doi:10.1080/15567036.2019.1568643.
  • Karatepe, N., N. Yuca, and F. Şenkal. 2013. Synthesis of Carbon-based Nano Materials for Hydrogen Storage. Fullerenes, Nanotubes, and Carbon Nanostructures 21:31–46.
  • Kaya, M., Ö. Şahin, and C. Saka. 2017. Preparation and TG/DTG, FT-IR, SEM, BET surface area, iodine number and methylene blue number analysis of activated carbon from pistachio shells by chemical activation. International Journal of Chemical Reactor Engineering. doi:10.1515/ijcre-2017-0060.
  • Khemmari, F., and K. Benrachedi. 2020. Valorization of peach stones to high efficient activated carbon: Synthesis, characterization, and application for Cr(VI) removal from aqueous medium. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (6):688–99. doi:10.1080/15567036.2019.1598519.
  • Kocabas, S., T. Kopac, G. Dogu, and T. Dogu. 2008. Effect of thermal treatments and palladium loading on hydrogen sorption characteristics of single-walled carbon nanotubes. International Journal of Hydrogen Energy 33:1693–99.
  • Kopac, T., and A. Toprak. 2009. Hydrogen sorption characteristics of Zonguldak region coal activated by physical and chemical methods. Korean Journal of Chemical Engineering 26:1700–05.
  • Kopac, T., and F. O. Erdogan. 2009. Temperature and alkaline hydroxide treatment effects on hydrogen sorption characteristics of multi-walled carbon nanotube graphite mixture. Journal of Industrial and Engineering Chemistry 15:730–35.
  • Kopac, T., and T. Karaaslan. 2007. H2, He and Ar sorption on arc-produced cathode deposit consisting of multiwalled carbon nanotubes-graphitic and diamond-like carbon. International Journal of Hydrogen Energy 32:3990–97.
  • Kopac, T., and Y. Kırca. 2020. Effect of ammonia and boron modifications on the surface and hydrogen sorption characteristics of activated carbons from coal. International Journal of Hydrogen Energy 45: 10494–10506. doi:10.1016/j.ijhydene.2019.07.125.
  • Kopac, T., Y. Kırca, and A. Toprak. 2017. Synthesis and characterization of KOH/Boron modified activated carbons from coal and their hydrogen sorption characteristics. International Journal of Hydrogen Energy 42:23606–16.
  • Li, W., K. Yang, J. Peng, L. Zhang, S. Guo, and H. Xia. 2008. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial Crops and Products 28:190–98.
  • Liu, X., C. Zhang, Z. Geng, and M. Cai. 2014. High-pressure hydrogen storage and optimizing fabrication of corncob-derived activated carbon. Microporous and Mesoporous Materials 194:60–65. doi:10.1016/j.micromeso.2014.04.005.
  • Minoda, A., S. Oshima, H. Iki, and E. Akiba. 2013. Synthesis of KOH-activated porous carbon materials and study of hydrogen adsorption. Journal of Alloys and Compounds 580 (1):301–04.
  • Olatunji, O. M., C. M. Ekpo, and E. Ukoha-Onuoha. 2017. Preparation and characterization of activated carbon from avocado pear (persea americana) seed using H2SO4, HNO3, and H3PO4 activating agent. International Journal of Ecological Science and Environmental Engineering 4 (5):43–50.
  • Şahin, Ö., C. Saka, A. A. Ceyhan, and O. Baytar. 2015. Preparation of high surface area activated carbon from Elaeagnus angustifolia seeds by chemical activation with ZnCl2 in one-step treatment and its iodine adsorption. Separation Science and Technology 50 (6):886–91.
  • Şahin, Ö., C. Saka, A. A. Ceyhan, and O. Baytar. 2016. The pyrolysis process of biomass by two-stage chemical activation with different methodology and iodine adsorption. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 38 (12):1756–62.
  • Ölçenoğlu, G. E., and C. Saka. 2020. Surface modification of coal sample with oxygen plasma treatment. Surface Engineering 36 (5):531–38.
  • Saka, C. 2012. BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. Journal of Analytical and Applied Pyrolysis 95:21–24.
  • Saka, C., Ö. Şahin, and S. Kutluay. 2016. Cold plasma and microwave radiation applications for surface modification on the pistachio husk-based adsorbent and its effects on the adsorption of rhodamine B. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects 38 (3):339–46.
  • Sharif, Y. M., C. Saka, O. Baytar, and Ö. Şahin. 2018. Preparation and characterization of activated carbon from sesame seed shells by microwave and conventional heating with zinc chloride activation. Analytical Letters 51 (17):2733–46.
  • Sing, K. S. W., and R. T. Williams. 2004. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorption Science & Technology 22:773–82.
  • Sricharoenchaikul, V., C. Pechyen, D. Aht-ong, and D. Atong. 2008. Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.). Waste. Energy&Fuels 22:31–37.
  • Tellez-Juárez, M. C., V. Fierro, W. Zhao, N. Fernández-Huerta, M. T. Izquierdo, E. Reguera, and A. Celzard. 2014. Hydrogen storage in activated carbons produced from coals of different ranks: Effect of oxygen content. International Journal of Hydrogen Energy 39:4996–5002.
  • Thomas, K. M. 2007. Hydrogen adsorption and storage on porous materials. Catalysis Today 120 (3–4):389–98. doi:10.1016/j.cattod.2006.09.015.
  • Toprak, A., and T. Kopac. 2011. Surface and hydrogen sorption characteristics of various activated carbons developed from Rat coal mine (Zonguldak) and anthracite. Chinese Journal of Chemical Engineering 19:931–37.
  • Wang, P., Y. Su, Y. Xie, S. Zhang, and Y. Xiong. 2019. Influence of torrefaction on properties of activated carbon obtained from physical activation of pyrolysis char. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (18):2246–56. doi:10.1080/15567036.2018.1555628.
  • Wazir, A. H., I. U. Wazir, and A. M. Wazir. 2020. Preparation and characterization of rice husk based physical activated carbon. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2020.1715512.
  • Xia, K., J. Hu, and J. Jiang. 2014. Enhanced room-temperature hydrogen storage in super-activated carbons: The role of porosity development by activation. Applied Surface Science 315:261–67. doi:10.1016/j.apsusc.2014.07.144.
  • Xu, W. C., K. Takahashi, Y. Matsuo, Y. Hattori, M. Kumagai, S. Ishiyama, K. Kaneko, and S. Lijima. 2007. Investigation of hydrogen storage capacity of various carbon materials. International Journal of Hydrogen Energy 32:2504–12.
  • Yang, R., G. Liu, M. Li, J. Zhang, and X. Hao. 2012. Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem. Microporous and Mesoporous Materials 158:108–16.
  • Zhao, W., V. Fierro, C. Zlotea, E. Aylon, M. T. Izquierdo, M. Latroche, and A. Celzard. 2011. Optimization of activated carbons for hydrogen storage. International Journal of Hydrogen Energy 36 (18):11746–51. doi:10.1016/j.ijhydene.2011.05.181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.