240
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Microbial fuel cell for effluent treatment and sustainable power generation

ORCID Icon, ORCID Icon &
Received 30 Jan 2019, Accepted 09 Jul 2020, Published online: 27 Jul 2020

References

  • Albalasmeh, A., A. A. Berhe, and T. A. Ghezzehei. 2013. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers 97:253–61. doi:10.1016/j.carbpol.2013.04.072.
  • Animesh, D., A. M. Bhagwat, and K. D. Anil. 2014. Importance of mixed culture in generation of electricity from anaerobically digested distillery wastewater through microbial fuel cell. Advances in Bioresearch 5:80–86.
  • APHA, AWWA, WEF. 2005. Standard methods for the examination of water and wastewater. American public health association. 19th ed. Washington: DC.
  • Balat, M. 2010. Microbial fuel cells as an alternative energy option. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32:26–35. doi:10.1080/15567030802466045.
  • Cetinkaya, A. Y., B. Ozkaya, E. Taskan, D. Karadag, and M. Cakmakci. 2016. The production of electricity from dual-chambered microbial fuel cell fueled by old age leachate. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (11):1544–52. doi:10.1080/15567036.2013.843041.
  • Chang, I. S., H. Moon, O. Bretschger, J. K. Jang, K. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically Active Bacteria (EAB) and mediator-less microbial fuel cells. Journal of Microbiology and Biotechnology 16:163–77.
  • Chaturvedi, V., and P. Verma. 2016. Microbial fuel cell: A green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing 38 (3):17.
  • Divyalakshmi, P., D. Murugan, M. Sivarajan, A. Sivasamy, P. Saravanan, and C. Lajapathi Rai. 2015. In situ disruption approach on aerobic sludge biomass for excess sludge reduction in tannery effluent treatment plant. Chemical Engineering Journal 276:130–36. doi:10.1016/j.cej.2015.04.085.
  • Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator- less microbial fuel cell. Biosensors and Bioelectronics 18:327–34. doi:10.1016/S0956-5663(02)00110-0.
  • Gude, V. G. 2016. Wastewater treatment in microbial fuel cells - An overview. Journal of Cleaner Production 122:287–307. doi:10.1016/j.jclepro.2016.02.022.
  • Gude, V. G., B. Kokabian, and V. Gadhamshetty. 2013. Beneficial bioelectrochemical systems for energy, water, and biomass production. Journal of Microbial and Biochemical Technology 5:S6–005.
  • Guo, K., D. J. Hassett, and T. Gu. 2012. Microbial fuel cells: electricity generation from organic wastes by microbes. In Microbial biotechnology: Energy and environment, edited R. Arora, 162–189. Oxon, United Kingdom: CAB International. ISBN 978-1845939564.
  • Gupta, G., B. Sikarwar, V. Vasudevan, M. Boopathi, O. Kumar, B. Singh, and R. Vijayaraghavan. 2011. Microbial fuel cell technology: A review on electricity generation. Journal of Cell and Tissue Research 11:2631–54.
  • He, Z., S. D. Minteer, and L. T. Angenent. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science & Technology 39:5262–67. doi:10.1021/es0502876.
  • Helder, M., D. P. Strik, H. V. M. Hamelers, and C. J. N. Buisman. 2012. The flat-plate plant-microbial fuel cell: The effect of a new design on internal resistances. Biotechnology for Biofuels 5:1–10. doi:10.1186/1754-6834-5-70.
  • Janicek, A., Y. Fan, and H. Liu. 2014. Design of microbial fuel cells for practical application: A review and analysis of scale-up studies. Biofuels 5:79–92. doi:10.4155/bfs.13.69.
  • Jothinathan, D., and R. T. Wilson. 2017. Comparative analysis of power production of pure, coculture, and mixed culture in a microbial fuel cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (5):520–27. doi:10.1080/15567036.2016.1233306.
  • Karchiyappan, T. 2018. Study of electrochemical process conditions for the electricity production in microbial fuel cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (8):951–58. doi:10.1080/15567036.2018.1468506.
  • Li, W. W., H. Q. Yu, and Z. He. 2014. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy & Environmental Science 7:911–24. doi:10.1039/C3EE43106A.
  • Logan, B. E. 2008. Microbial fuel cells. New Jersey: John Wiley & Sons Hoboken.
  • Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. Microbial Fuel Cell: Methodology and Technology. Environmental Science & Technology 40:5181–92. doi:10.1021/es0605016.
  • Logan, B. E., and J. M. Regan. 2006. Microbial fuel cells - Challenges and applications. Environmental Science & Technology 40:5172–80. doi:10.1021/es0627592.
  • Mc Carty, P. L., J. Bae, and J. Kim. 2011. Domestic wastewater treatment as a net energy producer - can this be achieved. Environmental Science & Technology 45:7100–06. doi:10.1021/es2014264.
  • Min, B., and B. E. Logan. 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology 38:5809–14. doi:10.1021/es0491026.
  • Mohamed, SN., T. Jayabalan, and K. Muthukumar. 2019. Simultaneous bioenergy generation and carbon dioxide sequestration from food wastewater using algae microbial fuel cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. Published online 18 Sep 2019. doi:10.1080/15567036.2019.1666932.
  • Müller, J., G. Lehne, J. Schwedes, S. Battenberg, R. Näveke, J. Kopp, N. Dichtl, A. Scheminski, R. Krull, and D. C. Hempel. 1998. Disintegration of sewage sludges and influence on anaerobic digestion. Water Science and Technology 38:425–33. doi:10.2166/wst.1998.0834.
  • Najafpour, G., M. Rahimnejad, and A. Ghoreyshi. 2011. The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33:2239–48. doi:10.1080/15567036.2010.518223.
  • Nimje, V. R., C. C. Chen, H. R. Chen, C. Y. Chen, M. J. Tseng, K. C. Cheng, R. C. Shih, and Y. F. Chang. 2012. A singlechamber microbial fuel cell without an air cathode. International Journal of Molecular Sciences 13:3933–48. doi:10.3390/ijms13033933.
  • Pandey, B. K., V. Mishra, and S. Agrawal. 2011. Production of bioelectricity during wastewater treatment using a single chamber microbial fuel cell. International Journal of Engineering, Science and Technology 3:42–47. doi:10.4314/ijest.v3i4.68540.
  • Pandit, S., A. Sengupta, S. Kale, and D. Das. 2011. Performance of electron acceptors in catholyte of a two chambered microbial fuel cell using anion exchange membrane. Bioresource Technology 102:2736–44. doi:10.1016/j.biortech.2010.11.038.
  • Park, D. H., and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering 81:348–55. doi:10.1002/bit.10501.
  • Park, D. H., and J. K. Zeikus. 2002. Impact of electrode composition on electricity generation in a single compartment fuel cell using. Shewanella Putrefaciens. Applied Microbiology and Biotechnology 59:5861.
  • Parkash, A. 2016. Generation of electricity by mediator less microbial fuel cell using sewage wastewater as a substrate. Journal of Advanced Chemical Engineering 6:146.
  • Rabaey, K., and W. Verstraete. 2005. Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology 23:291–98. doi:10.1016/j.tibtech.2005.04.008.
  • Ringeisen, B. R., E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, J. C. Biffinger, and J. M. Jones Meehan. 2006. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environmental Science & Technology 40:2629–34. doi:10.1021/es052254w.
  • Santoro, C., C. Arbizzani, B. Erable, and L. Lerpoulos. 2017. Microbial fuel cells: From fundamental to applications. A review. Journal of Power Sources 356:225–44. doi:10.1016/j.jpowsour.2017.03.109.
  • Sleutels, T. H. J. A., L. Darus, H. V. M. Hamelers, and C. J. N. Buisman. 2011. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems. Bioresource Technology 102:11172–76. doi:10.1016/j.biortech.2011.09.078.
  • Subhedar, P. B., and P. R. Gogate. 2016. Use of ultrasound for pretreatment of biomass and subsequent hydrolysis and fermentation. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, edited by Mussatto SI, 127–49. Elsevier. doi:10.1016/B978-0-12-802323-5.00006-2
  • Taskan, E., B. Özkaya, and H. Hasar. 2014. Effect of different mediator concentrations on power generation in MFC using TiTiO electrode. International Journal of Energy Science 4:911. doi:10.14355/ijes.2014.0401.02.
  • Tharali, A. D., N. Sain, and W. J. Osborne. 2016. Microbial fuel cells in bioelectricity production. Frontiers in Life Science9 9 (4):252–66. doi:10.1080/21553769.2016.1230787.
  • Wang, X., Y. Feng, J. Liu, H. Lee, C. Li, N. Li, and N. Ren. 2010. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics 25 (12):2639–43. doi:10.1016/j.bios.2010.04.036.
  • Yadav, A. K., S. K. Nayak, B. C. Acharya, and B. K. Mishra. 2015. Algal-assisted microbial fuel cell for wastewater treatment and bioelectricity generation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37:127–33. doi:10.1080/15567036.2011.576422.
  • Yücesoy, E., N. Lüdemann, H. Lucas, J. Tan, and M. Denecke. 2012. Protein analysis as a measure of active biomass in activated sludge. Water Science and Technology 65:1483–89. doi:10.2166/wst.2012.029.
  • Zhang, P., D. Xu, Y. Li, K. Yang, and T. Gu. 2015. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfo vibrio vulgaris biofilm. Bioelectrochemistry 101:14–21. doi:10.1016/j.bioelechem.2014.06.010.
  • Zuo, Y., and B. E. Logan. 2011. Power generation in MFCs with architectures based on tubular cathodes or fully tubular reactors. Water Science and Technology 64:2253–58. doi:10.2166/wst.2011.429.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.