190
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of biomass briquettes from agricultural waste on industrial application of flue-curing of tobacco

, , , , , , , , & show all
Received 27 Dec 2019, Accepted 10 Jul 2020, Published online: 30 Jul 2020

References

  • Abioye, A. M., and F. N. Ani. 2015. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews 52:1282–93. doi:10.1016/j.rser.2015.07.129.
  • Dessbesell, L., J. A. D. Farias, and F. Roesch. 2017. Complementing firewood with alternative energy sources in Rio Pardo Watershed, Brazil. Ciência Rural 47:9. doi:10.1590/0103-8478cr20151216.
  • Dey, S., N. M. Reang, M. Deb, and P. K. Das. 2020. Study on performance-emission trade-off and multi-objective optimization of diesel-ethanol-palm biodiesel in a single cylinder CI engine: A Taguchi-fuzzy approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–21. doi:10.1080/15567036.2020.1767234.
  • Donar, Y. O., E. Çağlar, and A. Sınağ. 2016. Preparation and characterization of agricultural waste biomass based hydrochars. Fuel 183:366–72. doi:10.1016/j.fuel.2016.06.108.
  • González-García, P., T. Centeno, E. Urones-Garrote, D. Ávila-Brande, and L. Otero-Díaz. 2013. Microstructure and surface properties of lignocellulosic-based activated carbons. Applied Surface Science 265:731–37. doi:10.1016/j.apsusc.2012.11.092.
  • Hu, B. B., and M. J. Zhu. 2019. Reconstitution of cellulosome: Research progress and its application in biorefinery. Biotechnology and Applied Biochemistry 66:720–30. doi:10.1002/bab.1804.
  • Hu, B. B., M. Y. Li, Y. T. Wang, and M. J. Zhu. 2018. High-yield biohydrogen production from non-detoxified sugarcane bagasse: Fermentation strategy and mechanism. Chemical Engineering Journal 335:979–87. doi:10.1016/j.cej.2017.10.157.
  • Khoshgoftar Manesh, M. H., and E. Jadidi. 2020. Conventional and advanced exergy, exergoeconomic and exergoenvironmental analysis of a biomass integrated gasification combined cycle plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–22. doi:10.1080/15567036.2020.1752856.
  • Kiris, S., and Y. Kasap. 2019. An analysis of the energy production efficiency of countries. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2019.1696428.
  • Kshirsagar, S. D., G. D. Saratale, R. G. Saratale, S. P. Govindwar, and M. K. Oh. 2016. An isolated Amycolatopsis sp. GDS for cellulase and xylanase production using agricultural waste biomass. Journal of Applied Microbiology 120:112–25. doi:10.1111/jam.12988.
  • Kunkes, E. L., D. A. Simonetti, R. M. West, J. C. Serrano-Ruiz, C. A. Gärtner, and J. A. Dumesic. 2008. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322:417–21. doi:10.1126/science.1159210.
  • Long, M., Y. Hua, X. Wang, Y. Wang, C. He, D. Huangfu, and W. Zi. 2018. Effect of different combined moistening and redrying treatments on the physicochemical and sensory capabilities of smoking food tobacco material. Drying Technology 36:52–62. doi:10.1080/07373937.2017.1299752.
  • Manochio, C., B. Andrade, R. Rodriguez, and B. Moraes. 2017. Ethanol from biomass: A comparative overview. Renewable and Sustainable Energy Reviews 80:743–55. doi:10.1016/j.rser.2017.05.063.
  • Miao, Z., P. Zhang, M. Li, Y. Wan, and X. Meng. 2019. Briquette preparation with biomass binder. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11.
  • Motghare, K. A., A. P. Rathod, K. L. Wasewar, and N. K. Labhsetwar. 2016. Comparative study of different waste biomass for energy application. Waste Management 47:40–45. doi:10.1016/j.wasman.2015.07.032.
  • Niju, S., S. K. Ajieth Kanna, V. Ramalingam, M. Satheesh Kumar, and M. Balajii. 2019. Sugarcane bagasse derived biochar – A potential heterogeneous catalyst for transesterification process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–12. doi:10.1080/15567036.2019.1680771.
  • Roy, R., and S. Ray. 2019. Effect of various pretreatments on energy recovery from waste biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2019.1680767.
  • Sarkar, N., S. K. Ghosh, S. Bannerjee, and K. Aikat. 2012. Bioethanol production from agricultural wastes: An overview. Renewable Energy 37:19–27. doi:10.1016/j.renene.2011.06.045.
  • Thines, K., Abdullah, E., Mubarak, N., Ruthiraan, M. 2017. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review. Renewable and Sustainable Energy Reviews 67: 257–276.
  • Tippayawong, N., C. Tantakitti, and S. Thavornun. 2006. Investigation of lignite and firewood co-combustion in a furnace for tobacco curing application. American Journal of Applied Sciences 3:1775–80. doi:10.3844/ajassp.2006.1775.1780.
  • U.S. Energy Information Administration. 2011. International energy outlook 2011. Washington, DC.
  • Wang, H., H. Xin, Z. Liao, J. Li, W. Xie, Q. Zeng, Y. Li, Q. Li, and X. Chen. 2014. Study on the effect of cut tobacco drying on the pyrolysis and combustion properties. Drying Technology 32:130–34. doi:10.1080/07373937.2013.781622.
  • Wang, J. A., Q. Zhang, Y. W. Wei, G. H. Yang, and F. J. Wei. 2019. Integrated furnace for combustion/gasification of biomass fuel for tobacco curing. Waste and Biomass Valorization 10:2037–44. doi:10.1007/s12649-018-0205-1.
  • Wang, X. F., G. Z. Xu, B. L. Zhang, Y. Z. Jiao, H. F. Lu, and B. M. Li. 2015. Application of tobacco stems briquetting in tobacco flue-curing in rural area of China. International Journal of Agricultural and Biological Engineering 8:84–88.
  • Xiao, X., C. Li, P. Ya, J. He, Y. He, and X. T. Bi. 2015. Industrial experiments of biomass briquettes as fuels for bulk curing barns. International Journal of Green Energy 12:1061–65. doi:10.1080/15435075.2014.891119.
  • Yang, X., H. Wang, P. Strong, S. Xu, S. Liu, K. Lu, K. Sheng, J. Guo, L. Che, and L. He. 2017. Thermal properties of biochars derived from waste biomass generated by agricultural and forestry sectors. Energies 10:469. doi:10.3390/en10040469.
  • Zi, W., J. Peng, X. Zhang, L. Zhang, and J. Liu. 2013a. Optimization of waste tobacco stem expansion by microwave radiation for biomass material using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers 44:678–85. doi:10.1016/j.jtice.2012.12.022.
  • Zi, W., X. Zhang, J. Peng, L. Zhang, M. Long, and J. Zuo. 2013b. Optimization of microwave drying biomass material of stem granules from waste tobacco using response surface methodology. Drying Technology 31:1234–44. doi:10.1080/07373937.2013.784874.
  • Zi, W., Y. Chen, Y. Pan, Y. Zhang, Y. He, and Q. Wang. 2019. Pyrolysis, morphology and microwave absorption properties of tobacco stem materials. Science of the Total Environment 683:341–50. doi:10.1016/j.scitotenv.2019.04.053.
  • Zou, C., X. Hu, W. Huang, G. Zhao, X. Yang, Y. Jin, H. Gu, F. Yan, Y. Li, and Q. Wu. 2019. Different yellowing degrees and the industrial utilization of flue-cured tobacco leaves. Scientia Agricola 76:1–9. doi:10.1590/1678-992x-2017-0157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.