382
Views
14
CrossRef citations to date
0
Altmetric
Review

Critical review on the characteristics of performance, combustion and emissions of PCCI engine controlled by early injection strategy based on narrow-angle direct injection (NADI)

ORCID Icon
Received 30 Dec 2019, Accepted 27 Jul 2020, Published online: 18 Aug 2020

References

  • Agarwal, A. K., A. P. Singh, and R. K. Maurya. 2017. Evolution, challenges and path forward for low temperature combustion engines. Progress in Energy and Combustion Science 61 Elsevier:1–56. doi:10.1016/j.pecs.2017.02.001.
  • Boot, M. D., C. C. M. Luijten, L. M. T. Somers, U. Eguz, D. D. T. M. van Erp, A. Albrecht, and R. S. G. Baert. 2009. Uncooled EGR as a means of limiting wall-wetting under early direct injection conditions. SAE Technical Paper.
  • Boot, M., E. Rijk, C. Luijten, B. Somers, and B. Albrecht. 2010. Spray impingement in the early direct injection premixed charge compression ignition regime. SAE Technical Paper.
  • Boyarski, N. J., and R. D. Reitz. 2006. Premixed compression ignition (PCI) combustion with modeling-generated piston bowl geometry in a diesel engine. SAE Technical Paper.
  • Cao, D. N., H. Anh Tuan Hoang, V. G. B. Quan Luu, and T. T. Huong Tran. 2020. Effects of injection pressure on the NOx and PM emission control of diesel engine: A review under the aspect of PCCI combustion condition. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–18. doi:10.1080/15567036.2020.1754531.
  • Chen, L., F. Yang, Y. Yang, X. Yang, and M. Ouyang. 2009. Application of narrow cone angle injectors to achieve advanced compression ignition on a mass-production diesel engine-control strategy and engine performance evaluation. SAE Technical Paper.
  • Cheng, X.-B., H. Yang-Yang, F.-Q. Yan, L. Chen, and S.-J. Dong. 2014. Investigation of the combustion and emission characteristics of partially premixed compression ignition in a heavy-duty diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 228 (7):784–98. SAGE Publications Sage UK: London, England.
  • d’Ambrosio, S., and A. Ferrari. 2015. Effects of exhaust gas recirculation in diesel engines featuring late PCCI type combustion strategies. Energy Conversion and Management 105 (Elsevier):1269–80. doi:10.1016/j.enconman.2015.08.001.
  • d’Ambrosio, S., D. Iemmolo, A. Mancarella, and R. Vitolo. 2016. Preliminary optimization of the PCCI combustion mode in a diesel engine through a design of experiments. Energy Procedia 101 (Elsevier):909–16. doi:10.1016/j.egypro.2016.11.115.
  • Dimitriou, P., W. Wang, and Z. Peng. 2015. A piston geometry and nozzle spray angle investigation in a DI diesel engine by quantifying the air-fuel mixture. International Journal of Spray and Combustion Dynamics 7 (1):1–24. SAGE Publications Sage UK: London, England. doi:10.1260/1756-8277.7.1.1.
  • Docquier, N. 2003. Influence of fresh charge preparation and composition on auto-ignition delays and combustion development in an optical HCCI direct injection diesel engine. SAE Technical Paper.
  • Fang, Q., J. Fang, J. Zhuang, and Z. Huang. 2013. Effects of Ethanol–diesel–biodiesel blends on combustion and emissions in premixed low temperature combustion. Applied Thermal Engineering 54 (2):541–48. Elsevier. doi:10.1016/j.applthermaleng.2013.01.042.
  • Fang, T., R. E. Coverdill, F. Lee Chia-fon, and R. A. White. 2008. Effects of injection angles on combustion processes using multiple injection strategies in an HSDI diesel engine. Fuel 87 (15–16):3232–39. Elsevier. doi:10.1016/j.fuel.2008.05.012.
  • Fayad, M. A. 2020. Effect of renewable fuel and injection strategies on combustion characteristics and gaseous emissions in diesel engines. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (4):460–70. Taylor & Francis. doi:10.1080/15567036.2019.1587091.
  • Gatellier, B., A. Ranini, and C. Michel. 2006. New developments of the NADI (TM) concept to improve operating range, exhaust emissions and noise. Oil & Gas Science and Technology 61 (1):7–23. EDP Sciences. doi:10.2516/ogst:2006001x.
  • Han, D., A. M. Ickes, S. V. Bohac, Z. Huang, and D. N. Assanis. 2012. HC and CO emissions of premixed low-temperature combustion fueled by blends of diesel and gasoline. Fuel 99( Elsevier):13–19. doi:10.1016/j.fuel.2012.04.010.
  • Hardy, W. L., and R. D. Reitz. 2006. A study of the effects of high EGR, high equivalence ratio, and mixing time on emissions levels in a heavy-duty diesel engine for PCCI combustion. no. 724.
  • Hasegawa, R., and H. Yanagihara. 2003. HCCI combustion in DI diesel engine. SAE Transactions 112. JSTOR. 1070–77.
  • Hoang, A. T. 2018. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. Journal of Marine Engineering & Technology Taylor & Francis: 1–13. doi:10.1080/20464177.2018.1532734.
  • Hoang, A. T. 2019. Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel. Energy 171( Elsevier):795–808. doi:10.1016/j.energy.2019.01.076.
  • Hoang, A. T. 2020. “Applicability of fuel injection techniques for modern diesel engines.” In AIP Conference Proceedings, 2207:20018. India: AIP Publishing LLC. 10.1063/5.0000133.
  • Hoang, A. T., and A. T. Le. 2019. Trilateral correlation of spray characteristics, combustion parameters, and deposit formation in the injector hole of a diesel engine running on preheated jatropha oil and fossil diesel fuel. Biofuel Research Journal 6 (1):909–19. Green Wave Publishing of Canada. doi:10.18331/BRJ2019.6.1.2.
  • Hoang, A. T., A. T. Le, and V. V. Pham. 2019. A core correlation of spray characteristics, deposit formation, and combustion of a high-speed diesel engine fueled with Jatropha oil and diesel fuel. Fuel 244( Elsevier):159–75. doi:10.1016/j.fuel.2019.02.009.
  • Hoang, A. T., and V. V. Pham. 2020. A study on a solution to reduce emissions by using hydrogen as an alternative fuel for a diesel engine integrated exhaust gas recirculation. In AIP Conference Proceedings, 2235:20035. India: AIP Publishing LLC. Doi:10.1063/5.0007492.
  • Huang, H., C. Zhou, Q. Liu, Q. Wang, and X. Wang. 2016. An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-Butanol blends. Applied Energy 170( Elsevier):219–31. doi:10.1016/j.apenergy.2016.02.126.
  • Hyvönen, J., C. Wilhelmsson, and B. Johansson. 2006. The effect of displacement on air-diluted multi-cylinder HCCI engine performance. SAE Technical Paper.
  • Jain, A., A. P. Singh, and A. K. Agarwal. 2017. Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine. Energy 122. Elsevier:249–64. doi:10.1016/j.energy.2017.01.050.
  • Jung, Y., C. Bae, S. B. Choi, and H. D. Shin. 2013. Premixed compression ignition combustion with various injector configurations in a heavy duty diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 227 (3):422–32. Sage Publications Sage UK: London, England.
  • Kathirvelu, B., and S. Subramanian. 2017. Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation. Environmental Engineering Research 22 (3):294–301. doi:10.4491/eer.2016.145.
  • Khayum, N., A. Subramanian, and M. Sivalingam. 2020 . Effect of nozzle opening pressure on combustion, performance, and emission analyses of a dual fuel diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects:1–20. Taylor & Francis. doi:10.1080/15567036.2020.1780349.
  • Kim, H., R. D. Reitz, and S.-C. Kong. 2006. Modeling combustion and emissions of HSDI diesel engines using injectors with different included spray angles. SAE Technical Paper.
  • Kim, H. J., S. H. Park, and C. S. Lee. 2015. Influence of the fuel spray angle and the injection strategy on the emissions reduction characteristics in a diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 229 (5):563–73. SAGE Publications Sage UK: London, England.
  • Kim, H. J., S. H. Park, and C. S. Lee. 2016. Impact of fuel spray angles and injection timing on the combustion and emission characteristics of a high-speed diesel engine. Energy 107. Elsevier:572–79. doi:10.1016/j.energy.2016.04.035.
  • Kim, H.-M., Y.-J. Kim, and K.-H. Lee. 2008. A study of the characteristics of mixture formation and combustion in a PCCI engine using an early multiple injection strategy. Energy & Fuels 22 (3):1542–48. ACS Publications. doi:10.1021/ef700568g.
  • Kook, S., and C. Bae. 2004. Combustion control using two-stage diesel fuel injection in a single-cylinder PCCI engine. SAE Transactions JSTOR 113:563–78.
  • Kook, S., S. Park, and C. Bae. 2007. Influence of early fuel injection timings on premixing and combustion in a diesel engine. Energy & Fuels 22 (1):331–37. ACS Publications. doi:10.1021/ef700521b.
  • Korkmaz, M., R. Zweigel, K. Niemietz, B. Jochim, D. Abel, and H. Pitsch. 2017. Assessment of different included spray cone angles and injection strategies for PCCI diesel engine combustion. SAE Technical Paper.
  • Lechner, G. A., T. J. Jacobs, C. A. Chryssakis, D. N. Assanis, and R. M. Siewert. 2005. Evaluation of a narrow spray cone angle, advanced injection timing strategy to achieve partially premixed compression ignition combustion in a diesel engine. SAE Transactions JSTOR 114:394–404.
  • Lee, S., and R. D. Reitz. 2006. Spray targeting to minimize soot and CO formation in premixed charge compression ignition (PCCI) combustion with a HSDI diesel engine. SAE Technical Paper.
  • Lemel, M., A. Hultqvist, A. Vressner, H. Nordgren, H. Persson, and B. Johansson. 2005. Quantification of the formaldehyde emissions from different HCCI engines running on a range of fuels. SAE Transactions JSTOR 114:1347–57.
  • Liang, X., Z. Zheng, H. Zhang, Y. Wang, and Y. Hanzhengnan. 2019. A review of early injection strategy in premixed combustion engines. Applied Sciences 9 (18):3737. Multidisciplinary Digital Publishing Institute. doi:10.3390/app9183737.
  • Maurya, R. K. 2017. Characteristics and control of low temperature combustion engines: Employing gasoline, ethanol and methanol. Switzerland: Springer.
  • Mei, D., S. Yue, X. Zhao, K. Hielscher, and R. Baar. 2017. Effects of center of heat release on combustion and emissions in a PCCI diesel engine fuelled by DMC-diesel blend. Applied Thermal Engineering 114 Elsevier:969–76. doi:10.1016/j.applthermaleng.2016.12.064.
  • Min, S. H., and H. K. Suh. 2016. Numerical study on the fuel spray targeting for the improvement of HSDI engine performance. Transactions of the Korean Society of Mechanical Engineers B 40 (9):569–76. The Korean Society of Mechanical Engineers. doi:10.3795/KSME-B.2016.40.9.569.
  • Mobasheri, R. 2017. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine. International Journal of Spray and Combustion Dynamics 9 (1):71–81. SAGE Publications Sage UK: London, England. doi:10.1177/1756827716651514.
  • Mobasheri, R., and Z. Peng. 2012. A computational investigation into the effects of included spray angle on heavy-duty diesel engine operating parameters. SAE Technical Paper.
  • Moon, S., W. Zhang, K. Nishida, Y. Matsumoto, and J. Gao. 2011. Development and evaporation of group-hole nozzle sprays under various surrounding and impinging conditions of direct-injection diesel engines. International Journal of Engine Research 12 (1):41–57. SAGE Publications Sage UK: London, England. doi:10.1177/14680874JER565.
  • Musculus, M. P. B., P. C. Miles, and L. M. Pickett. 2013. Conceptual models for partially premixed low-temperature diesel combustion. Progress in Energy and Combustion Science 39 (2–3):246–83. Elsevier. doi:10.1016/j.pecs.2012.09.001.
  • Neely, G. D., S. Sasaki, Y. Huang, J. A. Leet, and D. W. Stewart. 2005. New diesel emission control strategy to meet US Tier 2 emissions regulations. SAE Transactions JSTOR 114:512–24.
  • Nocivelli, L., G. Montenegro, Y. Liao, P. D. Eggenschwiler, J. Campbell, and N. Rapetto. 2015. Modeling of aqueous urea solution injection with characterization of spray-wall cooling effect and risk of onset of wall wetting. Energy Procedia 82( Elsevier):38–44. doi:10.1016/j.egypro.2015.11.880.
  • Opat, R., R. Youngchul, R. Krieger, R. D. Reitz, D. E. Foster, R. P. Durrett, and R. M. Siewert. 2007. Investigation of mixing and temperature effects on HC/CO Emissions for highly dilute low temperature combustion in a light duty diesel engine. SAE Technical Paper.
  • Park, S. S., Y. Jung, and C. Bae. 2013. Diesel knock visualization and frequency analysis of premixed charge compression ignition combustion with a narrow injection angle. SAE Technical Paper.
  • Park, S. H., S. H. Yoon, and C. S. Lee. 2013. HC and CO emissions reduction by early injection strategy in a bioethanol blended diesel-fueled engine with a narrow angle injection system. Applied Energy 107 Elsevier:81–88. doi:10.1016/j.apenergy.2013.02.015.
  • Park, S. W., and R. D. Reitz. 2009. Optimization of fuel/air mixture formation for stoichiometric diesel combustion using a 2-spray-angle group-hole nozzle. Fuel 88 (5):843–52. Elsevier. doi:10.1016/j.fuel.2008.10.028.
  • Park, S., R. D. Reitz, and J. Kim. 2011. Combustion and emission characteristics of converging group-hole nozzle under lean engine operating conditions. Fuel 90 (11):3259–67. Elsevier. doi:10.1016/j.fuel.2011.06.021.
  • Polat, S., H. Solmaz, E. Yılmaz, A. Calam, A. Uyumaz, and H. S. Yücesu. 2019. Mapping of an HCCI engine using negative valve overlap strategy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (9):1–15. Taylor & Francis.
  • Rezaei, S. Z., F. Zhang, X. Hongming, A. Ghafourian, J. M. Herreros, and S. Shuai. 2013. Investigation of two-stage split-injection strategies for a dieseline fuelled PPCI engine. Fuel 107 (Elsevier):299–308. doi:10.1016/j.fuel.2012.11.048.
  • Siewert, R. M. 2007. Spray angle and rail pressure study for low NOx diesel combustion. SAE Technical Paper.
  • Soloiu, V., M. Muinos, S. Harp, T. Naes, and R. Gaubert. 2016. Combustion and emissions characteristics of dual fuel premixed charge compression ignition with direct injection of synthetic FT kerosene produced from natural gas and port fuel injection of N-Butanol. SAE Technical Paper.
  • SToeck, T., T. Osipowicz, and K. F. Abramek. 2014. Methodology for the repair of denso common rail solenoid injectors. Eksploatacja I Niezawodność 16 (2):270–275.
  • Tanner, F. X., and S. Srinivasan. 2007. Global optimization of a two-pulse fuel injection strategy for a diesel engine using interpolation and a gradient-based method. SAE Technical Paper.
  • Vanegas, A., H. Won, and N. Peters. 2009. Influence of the nozzle spray angle on pollutant formation and combustion efficiency for a PCCI diesel engine. SAE Technical Paper.
  • Walter, B., and B. Gatellier. 2002. Development of the high power NADITM concept using dual mode diesel combustion to achieve zero nox and particulate emissions. SAE Transactions JSTOR. SAE 2002-01-1744:779–87.
  • Wo, H., K. D. Dearn, R. Song, H. Enzhu, X. Yufu, and H. Xianguo. 2015. Morphology, composition, and structure of carbon deposits from diesel and biomass oil/diesel blends on a pintle-type fuel injector nozzle. Tribology International 91( Elsevier):189–96. doi:10.1016/j.triboint.2015.07.003.
  • Yanagihara, H., Y. Sato, and J. Mizuta. 1997. A study of DI diesel combustion under uniform higher-dispersed mixture formation. JSAE Review 18 (4):361–67. Elsevier. doi:10.1016/S0389-4304(97)00031-3.
  • Yoon, S. H., H. J. Kim, and S. Park. 2018. Study on optimal combustion strategy to improve combustion performance in a single-cylinder PCCI diesel engine with different combustion chamber geometry. Applied Thermal Engineering 144( Elsevier):1081–90. doi:10.1016/j.applthermaleng.2018.09.003.
  • Youn, I. M., S. H. Park, H. G. Roh, and C. S. Lee. 2011. Investigation on the fuel spray and emission reduction characteristics for dimethyl ether (DME) fueled multi-cylinder diesel engine with common-rail injection system. Fuel Processing Technology 92 (7):1280–87. Elsevier. doi:10.1016/j.fuproc.2011.01.018.
  • Yu, H., Y. Guo, L. Donghai, X. Liang, G.-Q. Shu, Y. Wang, X. Wang, and L. Dong. 2015. Numerical investigation of the effect of spray cone angle on mixture formation and CO/soot emissions in an early injection HCCI diesel engine. SAE Technical Paper.
  • Zhang, Y., M. Jia, H. Liu, M. Xie, T. Wang, and L. Zhou. 2014. Development of a new spray/wall interaction model for diesel spray under PCCI-engine relevant conditions. Atomization and Sprays 24 (1):41–80. Begel House Inc. doi:10.1615/AtomizSpr.2013008287.
  • Zhang, Z., Y. Chi, L. Shang, P. Zhang, and Z. Zhao. 2016. On the role of droplet bouncing in modeling impinging sprays under elevated pressures. International Journal of Heat and Mass Transfer 102 Elsevier:657–68. doi:10.1016/j.ijheatmasstransfer.2016.06.052.
  • Zheng, M., X. Han, U. Asad, and J. Wang. 2015. Investigation of butanol-fuelled HCCI combustion on a high efficiency diesel engine. Energy Conversion and Management 98( Elsevier):215–24. doi:10.1016/j.enconman.2015.03.098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.