475
Views
6
CrossRef citations to date
0
Altmetric
Review

Review on development, recent advancement and applications of various types of solar dryers

ORCID Icon & ORCID Icon
Received 28 Jul 2019, Accepted 02 Aug 2020, Published online: 14 Aug 2020

References

  • Agrawal, A., and R. M. Sarviya. 2016. A review of research and development work on solar dryers with heat storage. International Journal of Sustainable Energy 35 (6):583–605. doi:10.1080/14786451.2014.930464.
  • Ait Mohamed, L., C. S. Ethmane Kane, M. Kouhila, A. Jamali, M. Mahrouz, and N. Kechaou. 2008. Thin layer modelling of Gelidium sesquipedale solar drying process. Energy Conversion and Management 49 (5):940–46. doi:10.1016/j.enconman.2007.10.023.
  • Akarslan, F. 2012. Solar-energy drying systems. In Modelling and optimum renewable energy system, ed. Ş. Arzu, 1–22. http://www.intechopen.com/books/modeling-and-optimization-of-renewable-energy-systems/solar-energy-drying-systems-and-applications
  • Akbulut, A., and A. Durmuş. 2010. Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy 35 (4):1754–63. doi:10.1016/j.energy.2009.12.028.
  • Akmak, G., and C. Yildiz. 2011. The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food and Bioproducts Processing 89 (2):103–08. doi:10.1016/j.fbp.2010.04.001.
  • Amer, B. M. A., K. Gottschalk, and M. A. Hossain. 2018. Integrated hybrid solar drying system and its drying kinetics of chamomile. Renew Energy 121:539–47. doi:10.1016/j.renene.2018.01.055.
  • Aritesty, E., and D. Wulandani. 2014. Performance of the rack type-greenhouse effect solar dryer for wild ginger (curcuma xanthorizza roxb.) drying. Energy Procedia 47. Elsevier Ltd: 94–100. doi:10.1016/j.egypro.2014.01.201.
  • Atkins, M. J., M. R. W. Walmsley, and A. S. Morrison. 1867–1873. Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes. Energy 35 (2010). doi: 10.1016/j.energy.2009.06.039.
  • Azaizia, Z., S. Kooli, A. Elkhadraoui, I. Hamdi, and A. A. Guizani. 2017. Investigation of a new solar greenhouse drying system for peppers. International Journal of Hydrogen Energy 42 (13):8818–26. doi:10.1016/j.ijhydene.2016.11.180.
  • Barnwal, P., and G. N. Tiwari. 2008. Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Solar Energy 82 (12):1131–44. doi:10.1016/j.solener.2008.05.012.
  • Belessiotis, V., and E. Delyannis. 2011. Solar drying. Solar Energy 85 (8):1665–91. doi:10.1016/j.solener.2009.10.001.
  • Bennamoun, L. 2012. Solar drying of wastewater sludge: A review. Renewable and Sustainable Energy Reviews 16:1061–73. doi:10.1016/j.rser.2011.10.005.
  • Bhardwaj, A. K., R. Kumar, and R. Chauhan. 2019. Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region. Solar Energy 177:395–407. doi:10.1016/j.solener.2018.11.007.
  • Bravo Hidalgo, D., R. Jiménez Borges, and Y. Valdivia Nodal. 2019. Applications of solar energy: History, sociology and last trends in investigation. Producción + Limpia 13:21–28. doi:10.22507/pml.v13n2a3.
  • Chauhan, P. S., and A. Kumar. 2016. Heat transfer analysis of north wall insulated greenhouse dryer under natural convection mode. Energy 118:1264–74. doi:10.1016/j.energy.2016.11.006.
  • Chauhan, P. S., A. Kumar, and C. Nuntadusit. 2018. Heat transfer analysis of PV integrated modified greenhouse dryer. Renewable Energy 121:53–65. doi:10.1016/j.renene.2018.01.017.
  • Chouicha, S., A. Boubekri, D. Mennouche, and M. H. Berrbeuh. 2013. Solar drying of sliced potatoes. An experimental investigation. Energy Procedia 36. Elsevier Ltd: 1276–85. doi:10.1016/j.egypro.2013.07.144.
  • Das, G. N. 2008. Tribeni; Tiwari, Heat and mass transfer of fish drying under forced convection mode. International Journal of Agricultural Research 3:69–76. doi:10.3923/ijar.2008.69.76.
  • Demissie, P., M. Hayelom, A. Kassaye, A. Hailesilassie, M. Gebrehiwot, and M. Vanierschot. 2019. Design, development and CFD modeling of indirect solar food dryer. Energy Procedia 158:1128–34. doi:10.1016/j.egypro.2019.01.278.
  • Dhanore, R. T., and M. Jibhakate. 2014. A solar tunnel dryer for drying red chilly as an agricultural product. International Journal of Research in Engineering and Technology 3:310–14.
  • Dharmarao, S., M. B. Bhoir, A. M. Bhosale, and S. S. Zanje. 2017. Design of solar dryer for rice at Karjat, Raigad, Maharashtra. International Journal of Research in Engineering and Technology 3:98–103.
  • Dina, S. F., H. Ambarita, F. H. Napitupulu, and H. Kawai. 2015. Study on effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans. Case Studies in Thermal Engineering 5:32–40. doi:10.1016/j.csite.2014.11.003.
  • Ekka, J. P., and M. Palanisamy. 2020. Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. Thermal Science and Engineering Progress 19:100607. doi:10.1016/j.tsep.2020.100607.
  • ELkhadraoui, A., S. Kooli, I. Hamdi, and A. Farhat. 2015. Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renewable Energy 77:1–8. doi:10.1016/j.renene.2014.11.090.
  • Essalhi, H., M. Benchrifa, R. Tadili, and M. N. Bargach. 2018. Experimental and theoretical analysis of drying grapes under an indirect solar dryer and in open sun. Innovative Food Science & Emerging Technologies 49:58–64. doi:10.1016/j.ifset.2018.08.002.
  • Etim, P. J., A. Ben Eke, and K. J. Simonyan. 2020. Design and development of an active indirect solar dryer for cooking banana. South Africa 8. doi:10.1016/j.sciaf.2020.e00463.
  • Farhat, A., S. Kooli, C. Kerkeni, M. Maalej, A. Fadhel, and A. Belghith. 2004. Validation of a pepper drying model in a polyethylene tunnel greenhouse. International Journal of Thermal Sciences 43:53–58. doi:10.1016/S1290-0729(03)00098-X.
  • Ferreira, A. G., L. M. Gonçalves, and C. B. Maia. 2014. Solar drying of a solid waste from steel wire industry. Applied Thermal Engineering 73:102–08. doi:10.1016/j.applthermaleng.2014.07.047.
  • Fudholi, A., K. Sopian, M. Y. Othman, and M. H. Ruslan. 2013. Energy and exergy analyses of solar drying system of red seaweed. Energy and Buildings 68:121–29. doi:10.1016/j.enbuild.2013.07.072.
  • Fudholi, A., R. Yendra, D. F. Basri, M. H. Ruslan, and K. Sopian. 2016. Energy and exergy analysis of hybrid solar drying system. Contemporary Engineering Sciences 9:215–23. doi:10.12988/ces.2016.512323.
  • Gbaha, P., H. Yobouet Andoh, J. Kouassi Saraka, B. Kaménan Koua, and S. Touré. 2007. Experimental investigation of a solar dryer with natural convective heat flow. Renewable Energy 32 (11):1817–29. doi:10.1016/j.renene.2006.10.011.
  • Hajar, E., T. Rachid, and B. M. Najib. 2017. Conception of a solar air collector for an indirect solar dryer. Pear drying test. Energy Procedia Elsevier Ltd: 29–33. doi:10.1016/j.egypro.2017.11.114.
  • Hamdani, T. A., and Z. M. Rizal. 2018. Fabrication and testing of hybrid solar-biomass dryer for drying fish. Case Studies in Thermal Engineering 12:489–96. doi:10.1016/j.csite.2018.06.008.
  • Hamdi, I., S. Kooli, A. Elkhadraoui, Z. Azaizia, F. Abdelhamid, and A. Guizani. 2018. Experimental study and numerical modeling for drying grapes under solar greenhouse. Renewable Energy 127:936–46. doi:10.1016/j.renene.2018.05.027.
  • Hegde, V. N., V. S. Hosur, S. K. Rathod, P. A. Harsoor, and K. B. Narayana. 2015. Design, fabrication and performance evaluation of solar dryer for banana. Energy, Sustainability and Society 5. doi:10.1186/s13705-015-0052-x.
  • Hossain, M. A., and B. K. Bala. 2007. Drying of hot chilli using solar tunnel drier. Solar Energy 81 (1):85–92. doi:10.1016/j.solener.2006.06.008.
  • Jain, D. 2007. Modeling the performance of the reversed absorber with packed bed thermal storage natural convection solar crop dryer. Journal of Food Engineering 78 (2):637–47. doi:10.1016/j.jfoodeng.2005.10.035.
  • Jain, D., and G. N. Tiwari. 2004. Effect of greenhouse on crop drying under natural and forced convection I: Evaluation of convective mass transfer coefficient. Energy Conversion and Management 45 (5):765–83. doi:10.1016/S0196-8904(03)00178-X.
  • Janjai, S., N. Lamlert, P. Intawee, B. Mahayothee, B. K. Bala, M. Nagle, and J. Müller. 2009. Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Solar Energy 83 (9):1550–65. doi:10.1016/j.solener.2009.05.003.
  • Janjai, S., P. Intawee, J. Kaewkiew, C. Sritus, and V. Khamvongsa. 2011. A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic. Renewable Energy 36 (3):1053–62. doi:10.1016/j.renene.2010.09.008.
  • Jitjack, K., S. Thepa, K. Sudaprasert, and P. Namprakai. 2016. Improvement of a rubber drying greenhouse with a parabolic cover and enhanced panels. Energy and Buildings 124:178–93. doi:10.1016/j.enbuild.2016.04.030.
  • Kamil Salihoglu, N., V. Pinarli, and G. Salihoglu. 2007. Solar drying in sludge management in Turkey. Renew Energy 32:1661–75. doi:10.1016/j.renene.2006.08.001.
  • Kant, K., A. Shukla, A. Sharma, A. Kumar, and A. Jain. 2016. Thermal energy storage based solar drying systems: A review. Innovative Food Science & Emerging Technologies 34:86–99. doi:10.1016/j.ifset.2016.01.007.
  • Karthikeyan, A. K., and S. Murugavelh. 2018. Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renewable Energy 128:305–12. doi:10.1016/j.renene.2018.05.061.
  • Koyuncu, T. 2006. An Investigation on the performance Improvement of greenhouse-type agricultural dryers. Renewable Energy 31 (7):1055–71. doi:10.1016/j.renene.2005.05.014.
  • Kumar, A., and G. N. Tiwari. 2006. Thermal modeling and parametric study for forced convection green house drying of jaggery.pdf. International Journal of Agricultural Research 3:265–79.
  • Kumar, A., and G. N. Tiwari. 2007. Effect of mass on convective mass transfer coefficient during open sun and greenhouse drying of onion flakes. Journal of Food Engineering 79:1337–50. doi:10.1016/j.jfoodeng.2006.04.026.
  • Kumar, M. 2013a. Experimental study on natural convection greenhouse drying of papad. Journal of Energy in Southern Africa 24:37–43. doi:10.17159/2413-3051/2013/v24i4a3144.
  • Kumar, M. 2013b. Forced convection greenhouse papad drying: Anexperimental study. Journal of Engineering Science and Technology 8:177–89.
  • Kumar, M. 2014a. Effect of size on the convective heat and mass transfer coefficients during natural convection greenhouse drying of Khoa-A heat desiccated milk product. International Journal of Renewable Energy and Biofuels (2014):1–11. doi:10.5171/2014.961114.
  • Kumar, M. 2014b. Effect of size on forced convection greenhouse drying of khoa. Journal of Mechanical Engineering Science 7:1157–67. doi:10.15282/jmes.7.2014.15.0113.
  • Kumar, M. 2016. Experimental forced solar thin layer ginger drying. Facta Universitatis, Series: Mechanical Engineering 14:101–11. doi:10.22190/FUME1601101K.
  • Kumar, M., R. K. Sahdev, S. Tiwari, H. Panchal, and H. Manchanda. 2019. Experimental free convection thin layer groundnut greenhouse drying. Agricultural Engineering International: CIGR Journal 21:203–11.
  • Kumar, M., S. K. Sansaniwal, and P. Khatak. 2016. Progress in solar dryers for drying various commodities. Renewable and Sustainable Energy Reviews 55:346–60. doi:10.1016/j.rser.2015.10.158.
  • Lamidi, R. O., L. Jiang, P. B. Pathare, Y. D. Wang, and A. P. Roskilly. 2019. Recent advances in sustainable drying of agricultural produce: A review. Applied Energy 233–234:367–85. doi:10.1016/j.apenergy.2018.10.044.
  • Lingayat, A. B., V. P. Chandramohan, V. R. K. Raju, and V. Meda. 2020. A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights. Applied Energy 258:114005. doi:10.1016/j.apenergy.2019.114005.
  • Madhlopa, A., and G. Ngwalo. 2007. Solar dryer with thermal storage and biomass-backup heater. Solar Energy 81 (4):449–62. doi:10.1016/j.solener.2006.08.008.
  • Maiti, S., P. Patel, K. Vyas, K. Eswaran, and P. K. Ghosh. 2011. Performance evaluation of a small scale indirect solar dryer with static reflectors during non-summer months in the Saurashtra region of western India. Solar Energy 85 (11):2686–96. doi:10.1016/j.solener.2011.08.007.
  • Mennouche, D., B. Bouchekima, A. Boubekri, S. Boughali, H. Bouguettaia, and D. Bechki. 2014. Valorization of rehydrated Deglet-Nour dates by an experimental investigation of solar drying processing method. Energy Conversion and Management 84:481–87. doi:10.1016/j.enconman.2014.04.067.
  • Mewa, E. A., M. W. Okoth, C. N. Kunyanga, and M. N. Rugiri. 2019. Experimental evaluation of beef drying kinetics in a solar tunnel dryer. Renewable Energy 139:235–41. doi:10.1016/j.renene.2019.02.067.
  • Misha, S., S. Mat, M. H. Ruslan, E. Salleh, and K. Sopian. 2016. Performance of a solar-assisted solid desiccant dryer for oil palm fronds drying. Solar Energy 132:415–29. doi:10.1016/j.solener.2016.03.041.
  • Mishra, M. K., K. R. Shrestha, V. Sagar, and R. K. Amatya. 2019. Performance of hybrid solar-biomass dryer. Nepal Journal of Environmental Science 5:61–69. doi:10.3126/njes.v5i0.22717.
  • Mohanraj, M., and P. Chandrasekar. 2009. Performance of a forced convection solar drier integrated with gravel as heat storage material for chili drying. Journal of Engineering Science and Technology 4:305–14.
  • Montero, I., J. Blanco, T. Miranda, S. Rojas, and A. R. Celma. 2010. Design, construction and performance testing of a solar dryer for agroindustrial by-products. Energy Conversion and Management 51 (7):1510–21. doi:10.1016/j.enconman.2010.02.009.
  • Morad, M. M., M. A. El-Shazly, K. I. Wasfy, and H. A. M. El-Maghawry. 2017. Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants. Renewable Energy 101:992–1004. doi:10.1016/j.renene.2016.09.042.
  • Mustapha, M. K., A. F. Salako, S. K. Ademola, and I. A. Adefila. 2014. Qualitative performance and economic analysis of low cost solar fish driers in Sub-Saharan Africa. Journal of Fisheries 2 (1):64. doi:10.17017/jfish.v2i1.2014.23.
  • Mustayen, A. G. M. B., S. Mekhilef, and R. Saidur. 2014. Performance study of different solar dryers: A review. Renewable and Sustainable Energy Reviews 34:463–70. doi:10.1016/j.rser.2014.03.020.
  • Nabnean, S., S. Janjai, S. Thepa, K. Sudaprasert, R. Songprakorp, and B. K. Bala. 2016. Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes. Renewable Energy 94:147–56. doi:10.1016/j.renene.2016.03.013.
  • Nayak, S., and G. N. Tiwari. 2008. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy and Buildings 40 (11):2015–21. doi:10.1016/j.enbuild.2008.05.007.
  • Patel, A. H., S. A. Shah, and H. Bhargav. 2013. Review on Solar Dryer for Grains, Vegetables and Fruits. International Journal of Engineering Research and Technology 2:1–7.
  • Patil, R., and R. Gawande. 2016. A review on solar tunnel greenhouse drying system. Renewable and Sustainable Energy Reviews 56:196–214. doi:10.1016/j.rser.2015.11.057.
  • Perré, P., and R. B. Keey. 2014. Drying of wood principles and practices. In Handb. Ind. Drying,Fourth, Taylor and Francis Group, 797–846. doi:10.1201/b17208.
  • Pirasteh, G., R. Saidur, S. M. A. Rahman, and N. A. Rahim. 2014. A review on development of solar drying applications. Renewable and Sustainable Energy Reviews 31:133–48. doi:10.1016/j.rser.2013.11.052.
  • Prakash, O., and A. Kumar. 2014a. Solar greenhouse drying: A review. Renewable and Sustainable Energy Reviews 29:905–10. doi:10.1016/j.rser.2013.08.084.
  • Prakash, O., and A. Kumar. 2014b. ANFIS modelling of a natural convection greenhouse drying system for jaggery: An experimental validation. International Journal of Sustainable Energy 33 (2):316–35. doi:10.1080/14786451.2012.724070.
  • Prakash, O., A. Kumar, and V. Laguri. 2016. Performance of modified greenhouse dryer with thermal energy storage. Energy Reports 2:155–62. doi:10.1016/j.egyr.2016.06.003.
  • Prakash, O., A. Kumar, and Y. I. Sharaf-Eldeen. 2016. Review on Indian Solar Drying Status. Current Sustainable/Renewable Energy Reports 3:113–20. doi:10.1007/s40518-016-0058-9.
  • Rabha, D. K., P. Muthukumar, and C. Somayaji. 2017. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renewable Energy 105:764–73. doi:10.1016/j.renene.2017.01.007.
  • Ramos, I. N., T. R. S. Brandão, and C. L. M. Silva. 2015. Simulation of solar drying of grapes using an integrated heat and mass transfer model. Renewable Energy 81:896–902. doi:10.1016/j.renene.2015.04.011.
  • Rathore, N. S., and N. L. Panwar. 2010. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Applied Energy 87 (8):2764–67. doi:10.1016/j.apenergy.2010.03.014.
  • Reyes, A., A. Mahn, F. Cubillos, and P. Huenulaf. 2013. Mushroom dehydration in a hybrid-solar dryer. Energy Conversion and Management 70:31–39. doi:10.1016/j.enconman.2013.01.032.
  • Reyes, A., A. Mahn, and F. Vásquez. 2014. Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Conversion and Management 83:241–48. doi:10.1016/j.enconman.2014.03.077.
  • Ringeisen, B., D. M. Barrett, and P. Stroeve. 2014. Concentrated solar drying of tomatoes. Energy for Sustainable Development 19:47–55. doi:10.1016/j.esd.2013.11.006.
  • Ronoh, E., C. Kanali, J. Mailutha, and D. Shitanda. 2011. Thin layer drying kinetics of amaranth (Amaranthus cruentus) grains in a natural convection solar tent dryer. African Journal of Food, Agriculture, Nutrition and Development 10:2218–33. doi:10.4314/ajfand.v10i3.54080.
  • Sahdev, R. K., M. Kumar, and A. K. Dhingra. 2017a. Effect of mass on convective heat transfer coefficient during open sun drying of groundnut. Journal of Food Science and Technology 54 (13):4510–16. doi:10.1007/s13197-017-2858-3.
  • Sahdev, R. K., M. Kumar, and A. K. Dhingra. 2017b. Forced convection drying of indian groundnut: An experimental study. Facta Universitatis, Series: Mechanical Engineering 15:467–77. doi:10.22190/FUME160812011S.
  • Sahdev, R. K., M. Kumar, and A. K. Dhingra. 2018. Forced convection greenhouse groundnut drying: An experimental study. Heat Transfer Research 49 (4):309–25. doi:10.1615/HeatTransRes.2018018321.
  • Saleh, A., and I. Badran. 2009. Modeling and experimental studies on a domestic solar dryer. Renew Energy 34:2239–45. doi:10.1016/j.renene.2009.03.001.
  • Sallam, Y. I., M. H. Aly, A. F. Nassar, and E. A. Mohamed. 2015. Solar drying of whole mint plant under natural and forced convection. Journal of Advanced Research 6 (2):171–78. doi:10.1016/j.jare.2013.12.001.
  • Sangamithra, A., G. J. Swamy, R. S. Prema, R. Priyavarshini, V. Chandrasekar, and S. Sasikala. 2014. An overview of a polyhouse dryer. Renewable and Sustainable Energy Reviews 40:902–10. doi:10.1016/j.rser.2014.08.007.
  • Sansaniwal, S. K., and M. Kumar. 2015. Analysis of ginger drying inside a natural convection indirect solar dryer: An experimental study. Journal of Mechanical Engineering and Sciences 9:1671–85. doi:10.15282/jmes.9.2015.13.0161.
  • Sansaniwal, S. K., M. Kumar, and V. K. Rajneesh. 2017. Investigation of indirect solar drying of ginger rhizomes (Zingiber officinale): A comparative study. Journal of Engineering Science and Technology 12:1956–71.
  • Selvanayaki, S., and K. Sampathkumar. 2017. Techno-economic analysis of solar dryers. In Green energy technology, ed. O. Prakash and A. Kumar, 463–93. Springer Nature Singapore. doi: 10.1007/978-981-10-3833-4_16.
  • Sethi, V. P., and S. Arora. 2009. Improvement in greenhouse solar drying using inclined north wall reflection. Solar Energy 83 (9):1472–84. doi:10.1016/j.solener.2009.04.001.
  • Şevik, S. 2013. Design, experimental investigation and analysis of a solar drying system. Energy Conversion and Management 68:227–34. doi:10.1016/j.enconman.2013.01.013.
  • Shaikh, T. B., and A. B. Kolekar. 2015. Review of hybrid solar dryers. International Journal of Innovative Research in Science, Engineering and technology[IJIERT] 2:1–7.
  • Shalaby, S. M., M. A. Bek, and A. A. El-Sebaii. 2014. Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews 33:110–16. doi:10.1016/j.rser.2014.01.073.
  • Shamekhi-Amiri, S., T. B. Gorji, M. Gorji-Bandpy, and M. Jahanshahi. 2018. Drying behaviour of lemon balm leaves in an indirect double-pass packed bed forced convection solar dryer system. Case Studies in Thermal Engineering 12:677–86. doi:10.1016/j.csite.2018.08.007.
  • Sharma, A., V. V. Tyagi, C. R. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13 (2):318–45. doi:10.1016/j.rser.2007.10.005.
  • Shrivastava, V., and A. Kumar. 1963–1972. Experimental investigation on the comparison of fenugreek drying in an indirect solar dryer and under open sun. Heat and Mass Transfer 52 (2015). doi: 10.1007/s00231-015-1721-1.
  • Singh Chauhan, P., A. Kumar, and P. Tekasakul. 2015. Applications of software in solar drying systems: A review. Renewable and Sustainable Energy Reviews 51:1326–37. doi:10.1016/j.rser.2015.07.025.
  • Singh, P., and M. K. Gaur. 2020. A review on role of solar drying technology in sustainable development. In Proc. Adapt. Learn. Optim. Intell. Comput. Appl. Sustain. Real-World Syst., Springer Nature Switzerland, ICSISCET Gwalior, India, 2019, PALO 13, eds. M. Pandit, L. Shrivastava, R. V. Rao, and J. C. Bansal, 18–27. doi: 10.1007/978-3-030-44758-8_3.
  • Singh, P., V. Shrivastava, and A. Kumar. 2018. Recent developments in greenhouse solar drying: A review. Renewable and Sustainable Energy Reviews 82:3250–62. doi:10.1016/j.rser.2017.10.020.
  • Singh, P. L. 2011. Silk cocoon drying in forced convection type solar dryer. Applied Energy 88:1720–26. doi:10.1016/j.apenergy.2010.11.016.
  • Singh, P. P., S. Singh, and S. S. Dhaliwal. 2006. Multi-shelf domestic solar dryer. Energy Conversion and Management 47:1799–815. doi:10.1016/j.enconman.2005.10.002.
  • Singh, S., and S. Kumar. 2012. Testing method for thermal performance based rating of various solar dryer designs. Solar Energy 86 (1):87–98. doi:10.1016/j.solener.2011.09.009.
  • Solanki, S. C., R. D. Singh, G. N. Tiwari, S. Nayak, and S. Dubey. 2009. Performance analysis of a conventional PV/T mixed mode dryer under no load condition. International Journal of Energy Research 33:919–30. doi:10.1002/er.1520.
  • Sonthikun, S., P. Chairat, K. Fardsin, P. Kirirat, A. Kumar, and P. Tekasakul. 2016. Computational fluid dynamic analysis of innovative design of solar-biomass hybrid dryer: An experimental validation. Renewable Energy 92:185–91. doi:10.1016/j.renene.2016.01.095.
  • Tiwari, G. N., S. Kumar, and O. Prakash. 2004. Evaluation of convective mass transfer coefficient during drying of jaggery. Journal of Food Engineering 63 (2):219–27. doi:10.1016/j.jfoodeng.2003.07.003.
  • Tiwari, G. N., T. Das, C. R. Chen, and P. Barnwal. 2009. Energy and exergy analyses of greenhouse fish drying. International Journal of Exergy 6 (5):620. doi:10.1504/ijex.2009.027493.
  • Tiwari, S., and G. N. Tiwari. 2016. Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer. Solar Energy 138:128–36. doi:10.1016/j.solener.2016.09.014.
  • Tiwari, S., and G. N. Tiwari. 2017. Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector. Energy 128:183–95. doi:10.1016/j.energy.2017.04.022.
  • Tiwari, S., G. N. Tiwari, and I. M. Al-Helal. 2016a. Development and recent trends in greenhouse dryer: A review. Renewable and Sustainable Energy Reviews 65:1048–64. doi:10.1016/j.rser.2016.07.070.
  • Tiwari, S., G. N. Tiwari, and I. M. Al-Helal. 2016b. Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Solar Energy 133:421–28. doi:10.1016/j.solener.2016.04.033.
  • Vijayavenkataraman, S., S. Iniyan, and R. Goic. 2012. A review of solar drying technologies. Renewable and Sustainable Energy Reviews 16 (5):2652–70. doi:10.1016/j.rser.2012.01.007.
  • Visavale, G. L. 2012. Principles, classification and selection of solar dryers. Singapore: National University of Singapore Press.
  • Ya, J., M. T. Jimoh, I. B. Kyari, M. A. Gele, and I. Musa. 2019. A review on solar tracking system: A technique of solar power output enhancement, Ibrahim Musa. A Rev. Sol. Track. Syst. A Tech. Sol. Power Output Enhanc. Chemical Engineering Science 4:1–11. doi:10.11648/j.es.20190401.11.
  • Zoukit, A., H. El Ferouali, I. Salhi, S. Doubabi, and N. Abdenouri. 2019. Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection. Renewable Energy 133:849–60. doi:10.1016/j.renene.2018.10.082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.