2,520
Views
1
CrossRef citations to date
0
Altmetric
Review

Development of pitch-based carbon fibers: a review

ORCID Icon, , ORCID Icon & ORCID Icon
Received 26 Sep 2019, Accepted 02 Aug 2020, Published online: 17 Aug 2020

References

  • Arai, Y. 2007. The present and future of pitch-based carbon fiber (In Japanese). 274. http://www.carbonfiber.gr.jp/pdf/26th_seminar_pitch.pdf
  • Bolanos, G., G. Liu, T. Hochgeschurtz, and M. C. Thies. 1993. Producing a carbon fiber precursor by supercritical fluid extraction. Fluid Phase Equilibria 82:303–10. doi:10.1016/0378-3812(93)87154-S.
  • Braun, J. L., K. M. Holtman, and J. F. Kadla. 2005. Lignin-based carbon fibers: Oxidative thermostabilization of kraft lignin. Carbon 43 (2):385–94. doi:10.1016/j.carbon.2004.09.027.
  • Bright, A. A., and L. S. Singer. 1979. The electronic and structural characteristics of carbon fibers from mesophase pitch. Carbon 17:59–69. doi:10.1016/0008-6223(79)90071-x.
  • Brooks, J. D., and G. H. Taylor. 1965. The formation of graphitizing carbons from the liquid phase. Carbon 3:185–93. doi:10.1016/0008-6223(65)90047-3.
  • Cato, A. D., and D. D. Edie. 2003. Flow behavior of mesophase pitch. Carbon 41 (7):1411–17. doi:10.1016/S0008-6223(03)00050-2.
  • Chand, S. 2000. Review carbon fibers for composites. Journal of Materials Science 35:1303–13. doi:10.1023/A:1004780301489.
  • Dai, Y. 2017. Review of Research on Structure of Coal Tar Pitch. Shangdong Chemical Industry 46:30–32. doi:10.19319/j.cnki..1008-021x.2017.01.010.
  • Dai, Z., B. Zhang, F. Shi, M. Li, Z. Zhang, and Y. Gu. 2011. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Applied Surface Science 257 (20):8457–61. doi:10.1016/j.apsusc.2011.04.129.
  • Derbyshire, F., R. Andrews, D. Jacques, M. Jagtoyen, G. Kimber, and T. Rantell. 2001. Synthesis of isotropic carbon fibers and activated carbon fibers from pitch precursors. Fuel 80:345–56. doi:10.1016/S0016-2361(00)00099-5.
  • Desheng, K., W. Haotian, L. Zhiyi, and C. Yi. 2014. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. Journal of the American Chemical Society 136 (13):4897–900. doi:10.1021/ja501497n.
  • Dhami, T. L., L. M. Manocha, and O. P. Bahl. 1991. Oxidation behaviour of pitch based carbon fibers. Carbon 29 (1):51–60. doi:10.1016/0008-6223(91)90094-Y.
  • Diez, N., P. Alvarez, R. Santamaria, C. Blanco, R. Menendez, and M. Granda. 2012. Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation. Fuel Processing Technology 93 (1):99–104. doi:10.1016/j.fuproc.2011.09.016.
  • Drbohlav, J., and W. T. K. Stevenson. 1995a. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part I: The oxidative stabilization process. Carbon 33 (5):693–711. doi:10.1016/0008-6223(95)00011-2.
  • Drbohlav, J., and W. T. K. Stevenson. 1995b. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part II: The carbonization process. Carbon 33 (5):713–31. doi:10.1016/0008-6223(95)00012-3.
  • Eberle, C. 2020. Commercialization of new carbon fiber materials based on sustainable resources for energy applications. Oak Ridge National Laboratory. The USA. ORNL/TM-2013/54. https://info.ornl.gov/sites/publications/Files/Pub41318.pdf.
  • Edie, D. D. 1998. The effect of processing on the structure and properties of carbon fibers. Carbon 36 (4):345–62. doi:10.1016/S0008-6223(97)00185-1.
  • Edie, D. D., and M. G. Dunham. 1989. Melt spinning pitch-based carbon fibers. Carbon 27 (5):647–55. doi:10.1016/0008-6223(89)90198-X.
  • Edie, D. D., N. K. Fox, B. C. Barnett, and C. C. Fain. 1986. Melt-spun non-circular carbon fibers. Carbon 24 (4):477–82. doi:10.1016/0008-6223(86)90271-X.
  • Endo, M., C. Kim, T. Karaki, T. Tamaki, Y. Nishimura, M. J. Matthews, S. D. M. Brown, and M. S. Dresselhaus. 1998. Structural analysis of the B-doped mesophase pitch-based graphite fibers by Raman spectroscopy. Physical Review B 58 (14):8991–96. doi:10.1103/PhysRevB.58.8991.
  • Fan, Z., M. Cao, W. Yang, S. Zhu, and Z. Feng. 2019. The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature. New Carbon Materials 1 (34):38–43. doi:10.1016/S1872-5805(19)60002-8.
  • Forintos, N., and T. Czigany. 2019. Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers – A short review. Composites Part B: Engineering 162:331–43. doi:10.1016/j.compositesb.2018.10.098.
  • Frank, E., F. Hermanutz, and M. R. Buchmeiser. 2012. Carbon fibers: Precursors, manufacturing, and properties. Macromolecular Materials and Engineering 297 (6):493–501. doi:10.1002/mame.201100406.
  • Fu, L., K. Tang, K. Song, P. A. van Aken, Y. Yu, and J. Maier. 2014. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6 (3):1384–89. doi:10.1039/C3NR05374A.
  • Ge, C., H. Yang, J. Miyawaki, I. Mochida, S.-H. Yoon, W. Qiao, D. Long, and L. Ling. 2015. Synthesis and characterization of high-softening-point methylene-bridged pitches by visible light irradiation assisted free-radical bromination. Carbon 95:780–88. doi:10.1016/j.carbon.2015.09.003.
  • Goma, J., and M. Oberlin. 1980. Graphitization of thin carbon films. Thin Solid Films 65 (2):221–32. doi:10.1016/0040-6090(80)90256-4.
  • Huang, X. 2009. Fabrication and Properties of Carbon Fibers. Materials 2 (4):2369–403. doi:10.3390/ma2042369.
  • Karmalm, P., T. Hjertberg, A. Jansson, R. Dahl, and K. Ankner. 2009. Network formation by epoxidised soybean oil in plastisol poly(vinyl chloride). Polymer Degradation and Stability 94 (11):1986–90. doi:10.1016/j.polymdegradstab.2009.07.029.
  • Kim, B.-J., Y. Eom, O. Kato, J. Miyawaki, B. C. Kim, I. Mochida, and S.-H. Yoon. 2014. Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon 77:747–55. doi:10.1016/j.carbon.2014.05.079.
  • Kim, B.-J., H. Kil, N. Watanabe, M.-H. Seo, B.-H. Kim, K. S. Yang, O. Kato, J. Miyawaki, I. Mochida, and S.-H. Yoon. 2013. Preparation of novel isotropic pitch with high softening point and solvent solubility for pitch-based electrospun carbon nanofiber. Current Organic Chemistry 27:1463–68. doi:10.2174/1385272811317130013.
  • Kim, B.-J., T. Kotegawa, Y. Eom, J. An, I.-P. Hong, O. Kato, K. Nakabayashi, J. Miyawaki, B. C. Kim, I. Mochida, et al. 2016. Enhancing the tensile strength of isotropic pitch-based carbon fibers by improving the stabilization and carbonization properties of precursor pitch. Carbon 99:649–57. doi:10.1016/j.carbon.2015.12.082.
  • Kojiro, U., A. Seisuke, T. Shigeki, Y. Takeo, Y. Motoo, and H. Kenji. 2015. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Advanced Materials 26 (33):5857–62. doi:10.1002/adma.201401736.
  • Korai, Y., M. Nakamura, I. Mochida, Y. Sakai, and S. Fujiyama. 1991. Mesophase pitches prepared from methylnaphthalene by the aid of HF/BF3. Carbon 29 (4–5):561–67. doi:10.1016/0008-6223(91)90121-X.
  • Krumpfer, J. W., E. Giebel, E. Frank, A. Muller, L. M. Ackermann, C. N. Tironi, G. Mourgas, J. Unold, M. Klapper, M. R. Buchmeiser, and K. Mullen. 2017. Poly (methyl vinyl ketone) as a potential carbon fiber precursor. Chemistry of Materials 29 (2):780–88. doi:10.1021/acs.chemmater.6b04774.
  • Lavin, J. G. 1992. Chemical reactions in the stabilization of mesophase pitch-based carbon fiber. Carbon 30 (3):351–57. doi:10.1016/0008-6223(92)90030-Z.
  • Lee, S., Y. Eom, B.-J. Kim, I. Mochida, S.-H. Yoon, and B. C. Kim. 2015. The thermotropic liquid crystalline behavior of mesophase pitches with different chemical structures. Carbon 81:694–701. doi:10.1016/j.carbon.2014.10.007.
  • Li, P., J. Xiong, M. Ge, J. Sun, W. Zhang, and Y. Song. 2015. Preparation of pitch-based general purpose carbon fibers from catalytic slurry oil. Fuel Processing Technology 140:231–35. doi:10.1016/j.fuproc.2015.09.011.
  • Liu, J., H. Shimanoe, K. Nakabayashi, J. Miyawaki, J.-E. Choi, Y.-P. Jeon, and S.-H. Yoon. 2018a. Enhancing the oxidative stabilization of isotropic pitch precursors prepared through the co-carbonization of ethylene bottom oil and polyvinyl chloride. Journal of Industrial and Engineering Chemistry 67:358–64. doi:10.1016/j.jiec.2018.07.008.
  • Liu, J., H. Shimanoe, K. Nakabayashi, J. Miyawaki, S. Ko, Y.-P. Jeon, and S.-H. Yoon. 2018b. Preparation of isotropic pitch precursor for pitch-based carbon fiber through the co-carbonization of ethylene bottom oil and polyvinyl chloride. Journal of Industrial and Engineering Chemistry 67:276–83. doi:10.1016/j.jiec.2018.06.039.
  • Liu, J., Q. Zhou, J. Chen, L. Zhang, and N. Chang. 2013. Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber. Chemical Engineering Journal 215–216:859–67. doi:10.1016/j.cej.2012.11.067.
  • Liu, Q., Y. Wang, L. Dai, J. Yao, Q. Liu, Y. Wang, L. Dai, and J. Yao. 2016. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Advanced Materials 28 (15):3000–06. doi:10.1002/adma.201506112.
  • Liu, Y., and S. Kumar. 2012. Recent progress in fabrication, structure, and properties of carbon fibers. Polymer Reviews 52 (3):234–58. doi:10.1080/15583724.2012.705410.
  • Liu, Z., Z. Zhao, Y. Wang, S. Dou, D. Yan, D. Liu, Z. Xia, S. Wang, and I. S. Exfoliated. 2017. Edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Advanced Materials 29 (18):1606207. doi:10.1002/adma.201606207.
  • Lu, Y., D. Wu, Q. Zha, L. Liu, and C. Yang. 1998. Skin-core structure in mesophase pitch-based carbon fibers: Causes and prevention. Carbon 36 (12):1719–24. doi:10.1016/S0008-6223(97)00172-3.
  • Maeda, T., S. Zeng, K. Tokumitsu, and J. Mondori. 1993. Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing—I. Preparation of spinnable isotropic pitch precursor from coal tar by air blowing. Carbon 31 (3):407–12. doi:10.1016/0008-6223(93)90127-V.
  • Maeda, Y. 2013. The recent trends of carbon fiber (In Japanese), Popular ed., 290. ISBN: 978-4-7813-0714-5. Japan: CMC.
  • Matsumoto, T., and I. Mochida. 1993. Oxygen distribution in oxidatively stabilized mesophase pitch fiber. Carbon 31 (1):143–47. doi:10.1016/0008-6223(93)90167-9.
  • Minus, M., and S. Kumar. 2005. The processing, properties, and structure of carbon fibers. JOM 57:52–58. doi:10.1007/s11837-005-0217-8.
  • Miura, K., H. Nakagawa, and K. Hashimoto. 1995. Examination of the oxidative stabilization reaction of the pitch-based carbon fiber through continuous measurement of oxygen chemisorption and gas formation rate. Carbon 33 (3):275–82. doi:10.1016/0008-6223(94)00133-K.
  • Mochida, I. 1990. Chemistry and engineering of carbon materials (In Japanese). Tokyo: Asakura Publishing. ISBN: 4-254-14553-5 C 3343.
  • Mochida, I., T. Inaba, Y. Korai, H. Fujitsu, and K. Takeshita. 1983a. Carbonization properties of carbonaceous substances oxidized by air blowing—I Carbonization behaviors and chemical structure of residual oils oxidized by air blowing. Carbon 21 (5):543–52. doi:10.1016/0008-6223(83)90237-3.
  • Mochida, I., T. Inaba, Y. Korai, and K. Takeshita. 1983b. Carbonization properties of carbonaceous substances oxidized by air blowing—II Acid-catalyzed modification of oxidized residual oil for better anisotropic development. Carbon 21 (6):553–58. doi:10.1016/0008-6223(83)90238-5.
  • Mochida, I., Y. Korai, C.-H. Ku, F. Watanabe, and Y. Sakai. 2000. Chemistry of synthesis structure, preparation and application of aromatic-derived mesophase pitch. Carbon 38:305–28. doi:10.1016/S0008-6223(99)00176-1.
  • Mochida, I., K. Shimizu, Y. Korai, H. Otsuka, and S. Fujiyama. 1988a. Structure and carbonization properties of pitches produced catalytically from aromatic hydrocarbons with HF/BF3. Carbon 26 (6):843–52. doi:10.1016/0008-6223(88)90108-X.
  • Mochida, I., K. Shimizu, Y. Korai, Y. Sakai, S. Fujiyama, H. Toshima, and T. Hono. 1992. Mesophase pitch catalytically prepared from anthracene with HF/BF3. Carbon 30 (1):55–61. doi:10.1016/0008-6223(92)90106-7.
  • Mochida, I., H. Toshima, and Y. Korai. 1990. A structural study on the stabilization and enhancement of mesophase pitch fibre. Journal of Materials Science 25:76–82. doi:10.1007/BF00544187.
  • Mochida, I., H. Toshima, Y. Korai, and T. Hino. 1989. Oxygen distribution in the mesophase pitch fibre after oxidative stabilization. Journal of Materials Science 24 (2):389–94. doi:10.1007/BF01107416.
  • Mochida, I., H. Toshima, Y. Korai, and T. Matsumoto. 1988b. Blending mesophase pitch to improve its properties as a precursor for carbon fibre. Part 1-Blending of PVC pitch into coal tar and petroleum-derived mesophase pitches. Journal of Materials Science 23:670–77. doi:10.1007/BF01174704.
  • Mochida, I., H. Toshima, Y. Korai, and T. Matsumoto. 1989a. Control of molecular orientations in mesophase pitch-based carbon fibre by blending PVC pitch. Journal of Materials Science (24):57–62. doi:10.1007/BF00660932.
  • Mochida, I., H. Toshima, Y. Korai, and T. Matsumoto. 1989b. A microscopic study on the oxidative stabilization of a coal-tar-based mesophase pitch and its blends with PVC pitch. Journal of Materials Science Letters 24:2191–98. doi:10.1007/BF02385440.
  • Mochida, I., S.-H. Yoon, and Y. Korai. 1993. Control of transversal texture in circular mesophase pitch-based carbon fiber using non-circular spinning nozzles. Journal of Materials Science (28):2331–36. doi:10.1007/BF01151662.
  • Mora, E., C. Blanco, V. Prada, R. Santamaria, M. Granda, and R. Menendez. 2002. A study of pitch-based precursors for general purpose carbon fibres. Carbon 40:2719–25. doi:10.1016/S0008-6223(02)00185-9.
  • Mora, E., R. Santamaria, C. Blanco, M. Granda, and R. Menendez. 2003. Mesophase development in petroleum and coal-tar pitches and their blends. Journal of Analytical and Applied Pyrolysis 68–69:409–24. doi:10.1016/S0165-2370(03)00034-2.
  • Morgan, P. 2005. Carbon fibers and their composites. CRC Press, Taylor & Francis Group, The USA. 170. ISBN: 9780429116827
  • Nicolas, M., M. Fei, and H. Adam. 2003. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. Journal of the American Chemical Society 125 (21):6588–94. doi:10.1021/ja0346328.
  • Norberg, I., Y. Nordstrom, R. Drougge, G. Gellerstedt, and E. Sjoholm. 2013. A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. Journal of Applied Polymer Science 128 (6):3824–30. doi:10.1002/app.38588.
  • Ogale, A. A., C. Lin, D. P. Anderson, and K. M. Kearns. 2002. Orientation and dimensional changes in mesophase pitch-based carbon fibers. Carbon 40 (8):1309–19. doi:10.1016/S0008-6223(01)00300-1.
  • Otani, S. 1965. On the carbon fiber from the molten pyrolysis products. Carbon 3 (1):31–38. doi:10.1016/0008-6223(65)90024-2.
  • Otani, S. 1967. Mechanism of the carbonization of MP carbon fiber at the low temperature range. Carbon 5 (3):219–25. doi:10.1016/0008-6223(67)90003-6.
  • Otani, S., K. Yamada, T. Koitabashi, and A. Yokoyama. 1966. On the raw materials of MP carbon fiber. Carbon 4 (3):425–32. doi:10.1016/0008-6223(66)90055-8.
  • Otani, S., and A. Yokoyama. 1969. Characteristic chemical constitution of pitch materials suitable for the MP carbon fiber. Bulletin of the Chemical Society of Japan 42:1417–24. doi:10.1246/bcsj.42.1417.
  • Ozsin, G., and A. E. Putun. 2018. Pitch based carbon fiber production. Journal of the Faculty of Engineering and Architecture of Gazi University 33 (4):1433–44. doi:10.17341/gazimmfd.4164440.
  • Ozsin, G., A. E. Putun, K. Nakabayashi, J. Miyawaki, and S.-H. Yoon. 2019. Environmental-friendly production of carbon fiber from isotropic hybrid pitches synthesized from waste biomass and polystyrene with ethylene bottom oil. Journal of Cleaner Production 239:118025–36. doi:10.1016/j.jclepro.2019.118025.
  • Park, S., C. Kim, Y. Jeong, D. Lim, Y. Lee, and K. Yang. 2004. Activation behaviors of isotropic pitch-based carbon fibers from electrospinning and meltspinning. Synthetic Metals 146 (2):207–12. doi:10.1016/j.synthmet.2004.07.004.
  • Park, S., C. Kim, and K. Yang. 2004. Preparation of carbonized fiber web from electrospinning of isotropic pitch. Synthetic Metals 143 (2):175–79. doi:10.1016/j.synthmet.2003.11.006.
  • Park, S.-J., and G.-Y. Heo. 2015. Precursors and manufacturing of carbon fibers. Material Science 210:31–66. doi:10.1007/978-94-017-9478-7_2.
  • Perez, M., M. Granda, R. Santamaria, T. Morgan, and R. Menendez. 2004. A thermoanalytical study of the co-pyrolysis of coal-tar pitch and petroleum pitch. Fuel 83 (9):1257–65. doi:10.1016/j.fuel.2003.11.012.
  • Prada, V., M. Granda, J. Bermejo, and R. Menendez. 1999. Preparation of novel pitches by tar air-blowing. Carbon 37:97–106. doi:10.1016/S0008-6223(98)00191-2.
  • Pradere, C., J. C. Batsale, J. M. Goyheneche, R. Pailler, and S. Dilhaire. 2009. Thermal properties of carbon fibers at very high temperature. Carbon 47 (3):737–43. doi:10.1016/j.carbon.2008.11.015.
  • Pradere, C., and C. Sauder. 2008. Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300–2500K). Carbon 46 (14):1874–84. doi:10.1016/j.carbon.2008.07.035.
  • Prauchner, M. J., V. M. D. Pasa, N. D. S. Molhallem, C. Otani, S. Otani, and L. C. Pardini. 2005a. Structural evolution of Eucalyptus tar pitch-based carbons during carbonization. Biomass & Bioenergy 28 (1):53–61. doi:10.1016/j.biombioe.2004.05.004.
  • Prauchner, M. J., V. M. D. Pasa, S. Otani, and C. Otani. 2005b. Biopitch-based general purpose carbon fibers: Processing and properties. Carbon 43 (3):591–97. doi:10.1016/j.carbon.2004.10.023.
  • Qiao, W., Y. Song, S.-H. Yoon, Y. Korai, I. Mochida, S. Yoshiga, H. Fukuda, and A. Yamazaki. 2006. Carbonization of waste PVC to develop porous carbon material without further activation. Waste Manag 26 (6):592–98. doi:10.1016/j.wasman.2005.06.010.
  • Qiao, W., S.-H. Yoon, Y. Korai, I. Mochida, S. Inoue, T. Sakurai, and T. Shimohara. 2004. Preparation of activated carbon fibers from polyvinyl chloride. Carbon 42 (7):1327–31. doi:10.1016/j.carbon.2004.01.035.
  • Qin, R., and J. B. Donnet. 1994. Influence of thermal and surface treatments on surface properties of pitch-based carbon fibers studied by inverse gas chromatography. Carbon 32 (1):165–74. doi:10.1016/0008-6223(94)90022-1.
  • Qin, X., Y. Lu, H. Xiao, Y. Wen, and T. Yu. 2012. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers. Carbon 50 (12):4459–69. doi:10.1016/j.carbon.2012.05.024.
  • Rahaman, M. S. A., A. F. Ismail, and A. Mustafa. 2007. A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability 92 (8):1421–32. doi:10.1016/j.polymdegradstab.2007.03.023.
  • Sauder, C., J. Lamon, and R. Pailler. 2004. The tensile behavior of carbon fibers at high temperatures up to 2400 °C. Carbon 42 (4):715–25. doi:10.1016/j.carbon.2003.11.020.
  • Seiryo, S., N. Satoshi, Y. Soichiro, H. Yumiko, and K. Kaoru. 2006. Carbon fiber technique for the investigation of single-cell mechanics in intact cardiac myocytes. Nature Protocols 1 (3):1453–57. doi:10.1038/nprot.2006.241.
  • Shui, J., F. Du, C. Xue, Q. Li, and L. Dai. 2014. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li–O2 batteries. Acs Nano 8 (3):3015–22. doi:10.1021/nn500327p.
  • Tagawa, T., and T. Miyata. 1997. Size effect on tensile strength of carbon fibers. Materials Science and Engineering: A 238 (2):336–42. doi:10.1016/S0921-5093(97)00454-1.
  • Tushar, K. D., G. Prosenjit, and C. D. Narayan. 2019. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review. Advanced Composites and Hybrid Materials 2 (2):214–33. doi:10.1007/s42114-018-0072-z.
  • Wang, C., M. Chen, and M. Li. 2018. Pitch-based carbon fiber (In Chinese), 185. ISBN: 978-7-122-32102-2. China: Chemistry Industry Press.
  • Wang, C., M. Li, Y. Wu, and C. Guo. 1998. Preparation and microstructure of hollow mesophase pitch-based carbon fibers. Carbon 36 (12):1749–54. doi:10.1016/S0008-6223(98)00117-1.
  • Warren, C. D. 2010. Low cost carbon fiber overview. Oak Ridge National Laboratory. https://www.energy.gov/sites/prod/files/2014/03/f11/lm002_warren_2011_o.pdf.
  • Watanabe, F., Y. Korai, I. Mochida, and Y. Nishimura. 2000. Structure of melt-blown mesophase pitch-based carbon fiber. Carbon 38:741–47. doi:10.1016/S0008-6223(99)00148-7.
  • Wazir, A., and L. Kakakhel. 2009. Preparation and characterization of pitch-based carbon fibers. New Carbon Materials 24 (1):83–88. doi:10.1016/S1872-5805(08)60039-6.
  • Wenxi, G., X. Chen, W. Xue, W. Sihong, P. Caofeng, L. Changjian, and W. Zhong Lin. 2012. Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. Journal of the American Chemical Society 134 (9):4437. doi:10.1021/ja2120585.
  • Wu, X., C. Wang, and C. Guo. 1998. Experimental scrutiny for the consititutive equation of mesophase pitch. Carbon 36 (9):1291–98. doi:10.1016/S0008-6223(98)00089-X.
  • Yang, J., K. Nakabayashi, J. Miyawaki, and S.-H. Yoon. 2016a. Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil. Journal of Industrial and Engineering Chemistry 34:397–404. doi:10.1016/j.jiec.2015.11.026.
  • Yang, J., K. Nakabayashi, J. Miyawaki, and S.-H. Yoon. 2016b. Preparation of isotropic spinnable pitch and carbon fiber by the bromination–dehydrobromination of biotar and ethylene bottom oil mixture. Journal of Materials Science 52 (2):1165–71. doi:10.1007/s10853-016-0412-8.
  • Yang, J., K. Nakabayashi, J. Miyawaki, and S.-H. Yoon. 2016c. Preparation of pitch based carbon fibers using Hyper-coal as a raw material. Carbon 106:28–36. doi:10.1016/j.carbon.2016.05.019.
  • Yang, K. S., B.-H. Kim, and S.-H. Yoon. 2014. Pitch based carbon fibers for automotive body and electrodes. Carbon Letters 15 (3):162–70. doi:10.5714/CL/2014.15.3.162.
  • Yoon, S.-H., Y. Korai, and I. Mochida. 1994. Assessment and optimization of the stabilization process of mesophase pitch fibers by thermal analyses. Carbon 32 (2):281–87. doi:10.1016/0008-6223(94)90191-0.
  • Yoon, S.-H., Y. Korai, I. Mochida, and I. Kaiu. 1994. The flow properties of mesophase pitches derived from methylnaphthalene in the temperature range of their spinning. Carbon 32 (2):273–80. doi:10.1016/0008-6223(94)90190-2.
  • Yu, D., S. Zhai, W. Jiang, K. Goh, L. Wei, X. Chen, R. Jiang, and Y. Chen. 2015. Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors. Advanced Materials 27 (33):4895–901. doi:10.1002/adma.201501948.
  • Yuan, G., B. Li, X. Li, Z. Dong, W. Hu, A. Westwood, Y. Cong, and J. Zhang. 2019. Effect of liquid crystalline texture of mesophase pitches on the structure and property of large-diameter carbon fibers. ACS Omega 4 (1):1095–102. doi:10.1021/acsomega.8b03189.
  • Yusof, N., and A. F. Ismail. 2012. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. Journal of Analytical and Applied Pyrolysis 93:1–13. doi:10.1016/j.jaap.2011.10.001.
  • Zeng, S., T. Maeda, K. Tokumitsu, J. Mondori, and I. Mochida. 1993. Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing—II. Air blowing of coal tar, hydrogenated coal tar, and petroleum pitches. Carbon 31 (3):413–19. doi:10.1016/0008-6223(93)90128-W.
  • Zhang, H., Z. Zhang, and C. Breidt. 2004. Comparison of short carbon fibre surface treatments on epoxy composites. Composites Science and Technology 64 (13–14):2021–29. doi:10.1016/j.compscitech.2004.02.009.
  • Zuo, T., X. Wu, C. Yang, Y. Yin, H. Ye, N. Li, and Y. Guo. 2017. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Advanced Materials 29 (29):1700389. doi:10.1002/adma.201700389.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.