225
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of air dissolved in water on simultaneous ultrasonic-assisted coal flotation

, ORCID Icon, , &
Received 15 Jun 2020, Accepted 02 Aug 2020, Published online: 17 Aug 2020

References

  • Ambedkar, B., R. Nagarajan, S. Jayanti. 2011. Ultrasonic coal-wash for de-sulfurization. Ultrasonics Sonochemistry. 18(3):718–26. doi:10.1016/j.ultsonch.2010.09.006.
  • Basařová, P., and M. Hubička. 2014. The collision efficiency of small bubbles with large particles. Minerals Engineering 66–68:230–33. doi:10.1016/j.mineng.2014.06.006.
  • Bayat, O., M. Ucurum, C. Poole. 2013. Effects of size distribution on flotation kinetics of Turkish sphalerite. Mineral Processing & Extractive Metallurgy 113:53–59. doi:10.1179/037195504225004643.
  • Blander, M. 1979. Bubble nucleation in liquids. Advances in Colloid and Interface Science 10:1–32. doi:10.1016/0001-8686(79)87002-5.
  • Bu, X., G. Xie, Y. Chen, C. Ni. 2017. The order of kinetic models in coal fines flotation. International Journal of Coal Preparation and Utilization. 37(3):113–23. doi:10.1080/19392699.2016.1140150.
  • Buttermore, W. H., and B. J. Slomka. 1991. The effect of sonic treatment on the flotability of oxidized coal. International Journal of Mineral Processing 32 (3–4):251–57. doi:10.1016/0301-7516(91)90071-P.
  • Castro, F. H. B. D., and M. C. D. Hoces. 1996. Flotation rate of celestite and calcite. Chemical Engineering Science 51:119–25. doi:10.1016/0009-2509(95)00235-9.
  • Chaves, A. P., and A. S. Ruiz. 2009. Considerations on the kinetics of froth flotation of ultrafine coal contained in tailings. Coal Preparation 29:289–97. doi:10.1080/19392690903558371.
  • Cheng, G., Y. Cao, C. Zhang, Z. Jiang, Y. Yu, and M. K. Mohanty. 2018. Application of novel flotation systems to fine coal cleaning. International Journal of Coal Preparation and Utilization. doi:10.1080/19392699.2018.1476348.
  • Dowling, E. C., R. R. Klimpel, F. F. Aplan, et al. 1985. Model discrimination in the flotation of a porphyry copper ore. Mining, Metallurgy & Exploration. 2(2):87–101. doi:10.1007/BF03402602.
  • Feng, D., and C. Aldrich. 2005. Effect of preconditioning on the flotation of coal. Chemical Engineering Communications 192:972–83. doi:10.1080/009864490521534.
  • Gokhan, O. S. 2017. Further investigations on simultaneous ultrasonic coal flotation. Minerals 7:177. doi:10.3390/min7100177.
  • Gu, G., R. Sean Sanders, K. Nandakumar, Z. Xu, J. H. Masliyah. 2004. A novel experimental technique to study single bubble–bitumen attachment in flotation. International Journal of Mineral Processing. 74(1–4):15–29. doi:10.1016/j.minpro.2003.08.002.
  • Ishida, N., T. Inoue, M. Miyahara, K. Higashitani. 2000. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir. 16(16):6377–80. doi:10.1021/la000219r.
  • Kaya, Ö., and N. Taşdöğen. 2020. An experimental study on the effects of some process parameters on lignite flotation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 42(19): 2397–404.
  • Klassen, V. 1960. Theoretical basis of flotation by gas precipitation. The Proceedings of Vth IMPC, 309–22. London.
  • Kowalczuk, P. B., and J. Drzymala. 2016. Physical meaning of the Sauter mean diameter of spherical particulate matter. Particulate Science and Technology. 34(6):645–47. doi:10.1080/02726351.2015.1099582.
  • Leighton, T. G., and R. E. Apfel. 1994. The acoustic bubble. Journal of the Acoustical Society of America 96 (4):2616–2616. doi:10.1121/1.410082.
  • Li, C., K. Zhen, Y. Hao, H. Zhang. 2018. Effect of dissolved gases in natural water on the flotation behavior of coal. Fuel 233:604–09. doi:10.1016/j.fuel.2018.06.104.
  • Liu, L., Y. Yang, P. Liu, W. Tan. 2013. The influence of air content in water on ultrasonic cavitation field. Ultrasonics Sonochemistry 21:566–71. doi:10.1016/j.ultsonch.2013.10.007.
  • Mao, Y., W. Xia, Y. Peng, G. Xie. 2019. Ultrasonic-assisted flotation of fine coal: A review. Fuel Processing Technology 195:106150. doi:10.1016/j.fuproc.2019.106150.
  • Mao, Y., X. Bu, Y. Peng, F. Tian, G. Xie. 2020. Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite. Fuel 259:116270. doi:10.1016/j.fuel.2019.116270.
  • Mao, Y., Y. Chen, X. Bu, G. Xie. 2020. Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force. Fuel. 256:115938.
  • Mishchuk, N. A. 2011. The model of hydrophobic attraction in the framework of classical DLVO forces. Advances in Colloid and Interface Science 168:149–66. doi:10.1016/j.cis.2011.06.003.
  • Mori, Y., K. Hijikata, T. Nagatani. 1976. Effect of dissolved gas on bubble nucleation. International Journal of Heat and Mass Transfer 19:1153–59. doi:10.1016/0017-9310(76)90149-6.
  • Muganda, S., M. Zanin, S. R. Grano. 2011. Influence of particle size and contact angle on the flotation of chalcopyrite in a laboratory batch flotation cell. International Journal of Mineral Processing. 98(3–4):150–62. doi:10.1016/j.minpro.2010.11.004.
  • Nguyen, A. V., and A. H. J. Schulze. 2004. Colloidal science of flotation: Marcel Dekker Inc. New York.
  • Nicol, S. K., M. D. Engel, K. Chye Teh. 1986. Fine-particle flotation in an acoustic field. International Journal of Mineral Processing. 17(1–2):143–50. doi:10.1016/0301-7516(86)90052-9.
  • Ozkan, S. G. 2012. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel 93:576–80. doi:10.1016/j.fuel.2011.10.032.
  • Ozkan, S. G., and H. Z. Kuyumcu. 2006. Investigation of mechanism of ultrasound on coal flotation. International Journal of Mineral Processing 81:201–03. doi:10.1016/j.minpro.2006.07.011.
  • Ralston, J., D. Fornasiero, R. Hayes. 1999. Bubble–particle attachment and detachment in flotation. International Journal of Mineral Processing. 56(1–4):133–64. doi:10.1016/S0301-7516(98)00046-5.
  • Rooze, J., E. V. Rebrov, J. C. Schouten, J. T. F. Keurentjes. 2013. Dissolved gas and ultrasonic cavitation – A review. Ultrasonics Sonochemistry. 20(1):1–11. doi:10.1016/j.ultsonch.2012.04.013.
  • Saleh, A. M. 2010. A study on the performance of second order models and two phase models in iron ore flotation. Physicochemical Problems of Mineral Processing. 44(1):215–230.
  • Sönmez, İ., Ü. Akdemir, and K. I. Şahbudak. 2006. Increasing selectivity in coal flotation by controlling impeller speed and collector concentration. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 27(4):381–86.
  • Sutherland, K. L. 1948. Physical chemistry of flotation. XI. Kinetics of the flotation process. Journal of Physical & Colloid Chemistry 52:394. doi:10.1021/j150458a013.
  • Wang, J., and A. V. Nguyen. 2016. Foam drainage in the presence of solid particles. Soft Matter 12:3004–12. doi:10.1039/C6SM00028B.
  • Wen, B., and W. Xia. 2017. Effect of particle shape on coal flotation. Energy Sources 39:1390–94. doi:10.1080/15567036.2017.1332697.
  • Xia, W. 2016. Biodiesel as a renewable collector for coal flotation in the future. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (13):1938–43. doi:10.1080/15567036.2015.1020461.
  • Xu, M. 1998. Modified flotation rate constant and selectivity index. Minerals Engineering 11:271–78. doi:10.1016/S0892-6875(98)00005-3.
  • Yuan, X.-M., B. I. Palsson, K. S. E. Forssberg. 1996. Statistical interpretation of flotation kinetics for a complex sulphide ore. Minerals Engineering. 9(4):429–42. doi:10.1016/0892-6875(96)00028-3.
  • Zhang, H., J. Liu, Y. Cao, Y. Wang. 2013. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride. Powder Technology 246:658–63. doi:10.1016/j.powtec.2013.06.033.
  • Zhang, Z., H. Zhang, H. Nong, J. Liu. 2017. The effect of calcium ions on coal flotation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 39(8):817–21. doi:10.1080/15567036.2016.1267825.
  • Zhou, Z. A., R. S. Chow, P. Cleyle, Z. H. Xu, J. H. Masliyah. 2010. Effect of dynamic bubble nucleation on bitumen flotation. Canadian Metallurgical Quarterly. 49(4):363–72. doi:10.1179/cmq.2010.49.4.363.
  • Zhou, Z. A., Z. Xu, J. A. Finch. 1994. On the role of cavitation in particle collection during flotation - a critical review. Minerals Engineering. 7(9):1073–84. doi:10.1016/0892-6875(94)00053-0.
  • Zhou, Z. A., Z. Xu, J. A. Finch, J. H. Masliyah, R. S. Chow. 2009. On the role of cavitation in particle collection in flotation – A critical review. II. Minerals Engineering. 22(5):419–33. doi:10.1016/j.mineng.2008.12.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.