167
Views
0
CrossRef citations to date
0
Altmetric
Review

Tribological properties of biodiesel: a review of recent advances

&
Received 29 May 2019, Accepted 09 Aug 2020, Published online: 31 Aug 2020

References

  • Agarwal, A. K., J. Bijwe, and L. M. Das. 2003a. Effect of biodiesel utilization of wear of vital parts in compression ignition engine. Journal of Engineering for Gas Turbines and Power 125:604–11. doi:10.1115/1.1454114.
  • Agarwal, A. K., J. Bijwe, and L. M. Das. 2003b. Wear assessment in a biodiesel fueled compression ignition engine. Journal of Engineering for Gas Turbines & Power 125:iii.
  • Agarwal, A. K., and J. G. Gupta. Effect of biodiesel utilization on tribological properties of lubricating oil in a compression ignition engine. New Delhi: Springer; 2014.
  • Agarwal, S., V. K. Chhibber, and A. K. Bhatnagar. 2017. Physico-chemical and tribological studies of argemone biodiesel synthesized using microwave technique. Current Science 113:00113891. doi:10.18520/cs/v113/i05/938-941.
  • Almeida, F. A., M. M. Maru, M. Shabani, F. J. Oliveira, R. F. Silva, and C. A. Achete. 2013. Enhancing the tribological performance under biodiesel lubrication using CVD diamond coated parts. Wear 302:1370–77. doi:10.1016/j.wear.2013.01.090.
  • Alves, S. M., A. C. de Farias, V. S. Melo, and Oliveira Junior, J. J. 2018. Effect of soybean biodiesel addition on tribological performance of ultralow sulfur diesel. Journal of Tribology 141(2):021803.
  • Arumugam, S., and G. Sriram. 2012. Effect of bio-lubricant and biodiesel-contaminated lubricant on tribological behavior of cylinder liner–piston ring combination. Tribology Transactions 55:438–45. doi:10.1080/10402004.2012.667517.
  • Ashokkumar, V., M. R. Salim, Z. Salam, P. Sivakumar, T. C. Cheng, S. Elumalai, V. Suresh, and F. N. Ani. 2017. Production of liquid biofuels (biodiesel and bioethanol) from brown marine macroalgae padina tetrastromatica. Energy Conversion and Management 135:351–61. doi:10.1016/j.enconman.2016.12.054.
  • Atabani, A. E. 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable & Sustainable Energy Reviews 16:2070–93. doi:10.1016/j.rser.2012.01.003.
  • Atabani, A. E., A. S. Silitonga, H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin, and H. Fayaz. 2013. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable & Sustainable Energy Reviews 18:211–45. doi:10.1016/j.rser.2012.10.013.
  • Babu, B. V., A. K. Dalai, and G. Supratim. 2018. Effects of natural additives on performance of canola biodiesel and its structurally modified derivatives. Industrial Crops and Products 125:303–313.
  • Barbera, E., A. Bertucco, and S. Kumar. 2018. Nutrients recovery and recycling in algae processing for biofuels production. Renewable & Sustainable Energy Reviews 90:28–42. doi:10.1016/j.rser.2018.03.004.
  • Barros, M. I. D., L. Vandenbulcke, J. Fontaine, G. Farges, M. Vayer, and R. Erre. 2000. Tribological performance of diamond-coated ti–6al–4v alloy with respect to diamond characteristics. Surface & Coatings Technology 127:193–202. doi:10.1016/S0257-8972(00)00668-X.
  • Baskar, G., and R. Aiswarya. 2016. Trends in catalytic production of biodiesel from various feedstocks. Renewable & Sustainable Energy Reviews 57:496–504. doi:10.1016/j.rser.2015.12.101.
  • Brinkman, M. L. J., F. V. D. Hilst, A. P. C. Faaij, and B. Wicke. 2018. Low-iluc-risk rapeseed biodiesel: Potential and indirect GHG emission effects in eastern romania. Biofuels 1–16. doi:10.1080/17597269.2018.1464873.
  • Canoira, L., J. G. Galeán, R. Alcántara, M. Lapuerta, and R. García-Contreras. 2010. Fatty acid methyl esters (fames) from castor oil: Production process assessment and synergistic effects in its properties. Renewable Energy 35:208–17. doi:10.1016/j.renene.2009.05.006.
  • Chong, W. W. F., and J. H. Ng. 2016. An atomic-scale approach for biodiesel boundary lubricity characterisation. International Biodeterioration & Biodegradation 113:34–43. doi:10.1016/j.ibiod.2016.03.029.
  • Constantine, D. A., Y. Wang, and E. J. Terrell. 2013. Effect of reciprocation frequency on friction and wear of vibrating contacts lubricated with soybean-based b100 biodiesel. Tribology Letters 50:279–85. doi:10.1007/s11249-013-0119-9.
  • de Oliveira, J. J, Jr., A. C. M. D. Farias, and S. M. Alves. 2017. Evaluation of the biodiesel fuels lubricity using vibration signals and multiresolution analysis. Tribology International 109:104–13. doi:10.1016/j.triboint.2016.12.031.
  • Fazal, M., A. Haseeb, and H. Masjuki. 2013. Investigation of friction and wear characteristics of palm biodiesel. Energy Conversion and Management 67:251–56. doi:10.1016/j.enconman.2012.12.002.
  • Fox, N. J., and G. W. Stachowiak. 2003. Boundary lubrication properties of oxidized sunflower oil. Tribology & Lubrication Technology 59:15.
  • Fuadi, Z., K. Adachi, and T. Muhammad. 2018. Formation of carbon-based tribofilm under palm methyl ester. Tribology Letters 66:88. doi:10.1007/s11249-018-1036-8.
  • Galbraith, R. M., and P. B. Hertz. The rocle test for diesel and bio-diesel fuel lubricity; 0148-7191. SAE Technical Paper; 1997.
  • Gebremariam, S. N., and J. M. Marchetti. 2018. Economics of biodiesel production: Review. Energy Conversion and Management 168:74–84. doi:10.1016/j.enconman.2018.05.002.
  • Goodrum, J. W., and D. P. Geller. 2005. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity. Bioresource Technology 96:851–55. doi:10.1016/j.biortech.2004.07.006.
  • Gupta, J., M. Agarwal, and A. K. Dalai. 2018. Marble slurry derived hydroxyapatite as heterogeneous catalyst for biodiesel production from soybean oil. Canadian Journal of Chemical Engineering 96:1873–80. doi:10.1002/cjce.23167.
  • Hamdan, S. H., and W. W. Chong. Simulation of lubricant stribeck curve for sae grade engine lubricants. Proceedings of Asia International Conference on Tribology 2018; 2018; Malaysian Tribology Society. p. 52–53,  Sarawak.
  • Hamdan, S. H., W. W. F. Chong, J. H. Ng, C. T. Chong, and S. Rajoo. 2017. A study of the tribological impact of biodiesel dilution on engine lubricant properties. Process Safety & Environmental Protection 112:S0957582017301684.
  • Hamdan, S. H., W. W. F. Chong, J. H. Ng, M. J. Ghazali, and R. J. K. Wood. 2017. Influence of fatty acid methyl ester composition on tribological properties of vegetable oils and duck fat derived biodiesel. Tribology International 113: 76–82.
  • Haseeb, A. S. M. A., S. Y. Sia, M. A. Fazal, and H. H. Masjuki. 2010. Effect of temperature on tribological properties of palm biodiesel. Energy 35:1460–64. doi:10.1016/j.energy.2009.12.001.
  • Hazrat, M. A., M. G. Rasul, and M. M. K. Khan. 2015. Lubricity improvement of the ultra-low sulfur diesel fuel with the biodiesel. Energy Procedia 75:111–17. doi:10.1016/j.egypro.2015.07.619.
  • He, P. F., G. Z. Ma, H. D. Wang, Q. S. Yong, S. Y. Chen, and B. S. Xu. 2016. Tribological behaviors of internal plasma sprayed to 2 -based ceramic coating on engine cylinder under lubricated conditions. Tribology International 102:407–18. doi:10.1016/j.triboint.2016.06.011.
  • Hindryawati, N., G. P. Maniam, C. K. Feng, and M. R. Karim. 2018. Trend in enzyme immobilization on nano materials for transesterification to produce biodiesel: A review. Journal of Bio-Science 23:1. doi:10.3329/jbs.v23i0.37463.
  • Jadhav, S. D., and M. S. Tandale. 2018. Optimization of transesterification process using homogeneous and nano-heterogeneous catalysts for biodiesel production from Mangifera indica oil. Environmental Progress & Sustainable Energy 37:533–45. doi:10.1002/ep.12690.
  • Kirubakaran, M., and M. S. V. Arul. 2018. Eggshell as heterogeneous catalyst for synthesis of biodiesel from high free fatty acid chicken fat and its working characteristics on a ci engine. Journal of Environmental Chemical Engineering  6(4): 4490–4503. S221334371830335X.
  • Kliestik, T., M. Misankova, K. Valaskova, and L. Svabova. 2018. Bankruptcy prevention: New effort to reflect on legal and social changes. Science and Engineering Ethics 24:791–803. doi:10.1007/s11948-017-9912-4.
  • Knothe, G. 2010. Biodiesel: Current trends and properties. Topics in Catalysis 53:714–20. doi:10.1007/s11244-010-9457-0.
  • Knothe, G., and K. R. Steidley. 2005. Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energy & Fuels 19:1192–200. doi:10.1021/ef049684c.
  • Kovacova, M., T. Kliestik, A. Pera, I. Grecu, and G. Grecu. 2019. Big data governance of automated algorithmic decision-making processes. Review of Contemporary Philosophy 18:126–32.
  • Kumar, D., B. Singh, A. Banerjee, and S. Chatterjee. 2018. Cement wastes as transesterification catalysts for the production of biodiesel from karanja oil. Journal of Cleaner Production 183:26–34. doi:10.1016/j.jclepro.2018.02.122.
  • Kumar, N., Varun, and S. Chauhan. 2014. Analysis of tribological performance of biodiesel. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 228:797–807. doi:10.1177/1350650114532452.
  • Lapuerta, M. N., R. GarcíA-Contreras, and J. R. Agudelo. 2010. Lubricity of ethanol-biodiesel-diesel fuel blends. Energy & Fuels 24:1374–79. doi:10.1021/ef901082k.
  • Machová, V., and J. Vrbka Value generators for businesses in agriculture. In The 12th International Days of Statistics and Economics; Prague; 2018.
  • Makowski, S., V. Weihnacht, F. Schaller, and A. Leson. 2014. Ultra-low friction of biodiesel lubricated ta-c coatings. Tribology International 71:120–24. doi:10.1016/j.triboint.2013.11.002.
  • Manigandan, S., A. E. Atabani, V. K. Ponnusamy, A. Pugazhendhi, and S. Prakash. 2020a. Effect of hydrogen and multiwall carbon nanotubes blends on combustion performance and emission of diesel engine using taguchi approach. Fuel 276:118120. doi:10.1016/j.fuel.2020.118120.
  • Manigandan, S., R. Sarweswaran, P. B. Devi, Y. Sohret, A. Kondratiev, S. Venkatesh, M. R. Vimal, and J. J. Joshua. 2020b. Comparative study of nanoadditives tio2, cnt, al2o3, cuo and ceo2 on reduction of diesel engine emission operating on hydrogen fuel blends. Fuel 262:116336. doi:10.1016/j.fuel.2019.116336.
  • Mardhiah, H. H., H. C. Ong, H. H. Masjuki, S. Lim, and Y. L. Pang. 2017. Investigation of carbon-based solid acid catalyst from jatropha curcas biomass in biodiesel production. Energy Conversion and Management 144:10–17. doi:10.1016/j.enconman.2017.04.038.
  • Mardoyan, A., and P. Braun. 2015. Analysis of czech subsidies for solid biofuels. International Journal of Green Energy 12:405–08. doi:10.1080/15435075.2013.841163.
  • Marousek, J., L. Kolař, M. Vochozka, V. Stehel, and A. Marouskova. 2017. Novel method for cultivating beetroot reduces nitrate content. Journal of Cleaner Production 168:60–62. doi:10.1016/j.jclepro.2017.08.233.
  • Marousek, J., O. Strunecký, and V. Stehel. 2019. Biochar farming: Defining economically perspective applications. Clean Technologies and Environmental Policy 21:1389–95. doi:10.1007/s10098-019-01728-7.
  • Marousek, J., S. Itoh, O. Higa, Y. Kondo, M. Ueno, R. Suwa, Y. Komiya, J. Tominaga, and Y. Kawamitsu. 2012. The use of underwater high-voltage discharges to improve the efficiency of jatropha curcas l. Biodiesel Production. Biotechnology and Applied Biochemistry 59:451–56. doi:10.1002/bab.1045.
  • Marousek, J., S. Itoh, O. Higa, Y. Kondo, M. Ueno, R. Suwa, Y. Komiya, J. Tominaga, and Y. Kawamitsu. 2013. Pressure shockwaves to enhance oil extraction from jatropha curcas l. Biotechnology & Biotechnological Equipment 27:3654–58. doi:10.5504/BBEQ.2012.0143.
  • Maru, M. M., R. M. Trommer, K. F. Cavalcanti, E. S. Figueiredo, R. F. Silva, and C. A. Achete. 2014. The stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends. Energy 69:673–81. doi:10.1016/j.energy.2014.03.063.
  • Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. Microalgae for biodiesel production and other applications: A review. Renewable & Sustainable Energy Reviews 14:217–32. doi:10.1016/j.rser.2009.07.020.
  • Mosarof, M. H., M. A. Kalam, H. H. Masjuki, A. Alabdulkarem, M. Habibullah, A. Arslan, and I. M. Monirul. 2016. Assessment of friction and wear characteristics of calophyllum inophyllum and palm biodiesel. Industrial Crops and Products 83:470–83. doi:10.1016/j.indcrop.2015.12.082.
  • Öner, C., H. Hazar, and M. Nursoy. 2009. Surface properties of crn coated engine cylinders. Materials & Design 30:914–20. doi:10.1016/j.matdes.2008.05.018.
  • Ouz, H., H. Düzcükolu, and S. Ekinci. 2011. The investigation of lubrication properties performance of euro-diesel and blodiesel. Tribology Transactions 54:449–56. doi:10.1080/10402004.2011.556315.
  • Parida, M. K., and A. K. Rout. 2019. Combustion of argemone mexicana biodiesel blends in a constant-volume dici engine. Biofuels 10(4): 537–543.
  • Patil, P. D., H. Reddy, T. Muppaneni, and S. Deng. 2017. Biodiesel fuel production from algal lipids using supercritical methyl acetate (glycerin-free) technology. Fuel 195:201–07. doi:10.1016/j.fuel.2016.12.060.
  • Pimentel, M. F., G. M. G. S. Ribeiro, R. S. D. Cruz, L. Stragevitch, and J. G. A. P. Filho. 2006. Determination of biodiesel content when blended with mineral diesel fuel using infrared spectroscopy and multivariate calibration. Microchemical Journal 82:201–06. doi:10.1016/j.microc.2006.01.019.
  • Rahman, M. M., M. Rasul, and N. M. S. Hassan. 2017. Study on the tribological characteristics of australian native first generation and second generation biodiesel fuel. Energies 10:55. doi:10.3390/en10010055.
  • Rejowski, E. D., P. M. Sr, M. F. Pillis, and T. Casserly. Application of dlc coating in cylinder liners for friction reduction. Sae Technical Papers; 2012.
  • Ribeiro, N. M., A. C. Pinto, C. M. Quintella, G. O. D. Rocha, L. S. G. Teixeira, L. L. N. Guarieiro, and M. D. C. Rangel. 2007. The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: A review. Energy & Fuels 21:2433–45. doi:10.1021/ef070060r.
  • Rodolfi, L., G. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M. Tredici. 2010. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 102:100–12. doi:10.1002/bit.22033.
  • Roegiers, M., and B. Zhmud. 2010. Tribological performance of ionised vegetable oils as lubricity and fatty oiliness additives in lubricants and fuels. Lubrication Science 21:169–82. doi:10.1002/ls.85.
  • Sakthivel, R., K. Ramesh, R. Purnachandran, and P. M. Shameer. 2018. A review on the properties, performance and emission aspects of the third generation biodiesels. Renewable and Sustainable Energy Reviews 82:2970–92. doi:10.1016/j.rser.2017.10.037.
  • Sapawe, N., S. Samion, P. Zulhanafi, C. S. N. Azwadi, and M. F. Hanafi. 2016. Effect of addition of tertiary-butyl hydroquinone into palm oil to reduce wear and friction using four-ball tribotester. Tribology Transactions 59:883–88. doi:10.1080/10402004.2015.1118584.
  • Shabani, M., J. M. Carrapichano, F. J. Oliveira, and R. F. Silva. 2017. Multilayered diamond mechanical seal rings under biodiesel lubrication and the full sealing conditions of pressurized water. Wear s 384–385:178–84. doi:10.1016/j.wear.2017.01.058.
  • Sharma, Y. C., B. Singh, and S. N. Upadhyay. 2008. Advancements in development and characterization of biodiesel: A review. Fuel 87:2355–73. doi:10.1016/j.fuel.2008.01.014.
  • Silitonga, A. S. 2013. Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renewable & Sustainable Energy Reviews 22:346–60. doi:10.1016/j.rser.2013.01.055.
  • Singh, P., and S. R. Chauhan. 2017. Influence of temperature on tribological performance of dual biofuel. Fuel  207(1):751–762. S0016236117306853.
  • Singh, Y., A. Singla, and A. K. Singh. 2017. Tribological characteristics of mongongo-oil–based biodiesel blended lubricant. Energy Sources 39:332–38. doi:10.1080/15567036.2016.1176093.
  • Singh, Y., A. Singla, and S. Bhurat. 2016. Tribological behavior of pongamia oil-based biodiesel blended lubricant at different loads. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:2876–82. doi:10.1080/15567036.2015.1120821.
  • Srivastava, G., A. K. Paul, and V. V. Goud. 2018. Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition. Energy Conversion and Management 156:269–78. doi:10.1016/j.enconman.2017.10.093.
  • Stehel, V., J. Horak, and M. Vochozka. 2019. Prediction of institutional sector development and analysis of enterprises active in agriculture. E & M Ekonomie A Management 22:103–18. doi:10.15240/tul/001/2019-4-007.
  • Sundus, F., H. Masjuki, and M. Fazal. 2017. Analysis of tribological properties of palm biodiesel and oxidized biodiesel blends. Tribology Transactions 60:530–36. doi:10.1080/10402004.2016.1183838.
  • Sundus, F., H. H. Masjuki, and M. A. Fazal. 2016. Analysis of tribological properties of palm biodiesel and oxidized biodiesel blends. A S L E Transactions 60:530–36.
  • Sundus, F., M. A. Fazal, and H. H. Masjuki. 2017a. Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties. Renewable & Sustainable Energy Reviews 70:399–412. doi:10.1016/j.rser.2016.11.217.
  • Sundus, F., M. A. Fazal, and H. H. Masjuki. 2017b. Effect of anti-oxidants on the lubricity of b30 biodiesel-diesel blend. Lubrication Science 29:3–15. doi:10.1002/ls.1345.
  • Verma, S., A. Suman, L. M. Das, S. C. Kaushik, and S. K. Tyagi. 2019. A renewable pathway towards increased utilization of hydrogen in diesel engines. International Journal of Hydrogen Energy  45(8): 5577–5587.
  • Wadumesthrige, K., M. Ara, S. O. Salley, and K. Y. S. Ng. 2009. Investigation of lubricity characteristics of biodiesel in petroleum and synthetic fuel. Energy & Fuels 23:2229–34. doi:10.1021/ef800887y.
  • Wain, K. S., J. M. Perez, E. Chapman, and A. L. Boehman. 2005. Alternative and low sulfur fuel options: Boundary lubrication performance and potential problems. Tribology International 38:313–19. doi:10.1016/j.triboint.2004.08.014.
  • Weinebeck, A., S. Kaminski, H. Murrenhoff, and L. Kai. 2017. A new qspr-based prediction model for biofuel lubricity. Tribology International 115. doi:10.1016/j.triboint.2017.05.005.
  • Westhuizen, I. V. D., and W. W. Focke. 2018. Stabilizing sunflower biodiesel with synthetic antioxidant blends. Fuel 219:126–31. doi:10.1016/j.fuel.2018.01.086.
  • Xiao, H., H. Zou, and S. Liu. 2020. Effects of graphene and mos 2 absorption films on tribological properties of steel-steel contact lubricated by biodiesel. Energy Sources Part A Recovery Utilization and Environmental Effects 1–17. doi:10.1080/15567036.2020.1764668
  • Xiao, H., H. Zou, S. Liu, and C. Li. 2019b. An investigation of the friction and wear behavior of soybean biodiesel. Tribology International 131:377–85. doi:10.1016/j.triboint.2018.10.037.
  • Xiao, H., and S. Liu. 2017. 2d nanomaterials as lubricant additive: A review. Materials & Design 135:319–32. doi:10.1016/j.matdes.2017.09.029.
  • Xiao, H., and S. Liu. 2018. Zirconium phosphate (zrp)-based functional materials: Synthesis, properties and applications. Materials & Design 155:19–35. doi:10.1016/j.matdes.2018.05.041.
  • Xiao, H., S. Liu, Q. Xu, and H. Zhang. 2019a. Carbon quantum dots: An innovative additive for water lubrication. Science China-technological Sciences 62:587–96. doi:10.1007/s11431-018-9330-y.
  • Xu, Y., I. Keresztes, A. M. Condo Jr, P. Dan, P. Pepiot, and C. T. Avedisian. 2016. Droplet combustion characteristics of algae-derived renewable diesel, conventional #2 diesel, and their mixtures. Fuel 167:295–305. doi:10.1016/j.fuel.2015.11.036.
  • Xu, Y., Q. Wang, X. Hu, C. Li, and X. Zhu. 2010. Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig. Energy 35:283–87. doi:10.1016/j.energy.2009.09.020.
  • Xu, Y., Q. Wang, X. Hu, and Chen, J. Preliminary study on tribological performance of straw based bio-fuel. In ASME/STLE 2007 International Joint Tribology Conference, American Society of Mechanical Engineers; 2007. p. 81–83, San Diego, California.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.